Как называется хвост самолета – Основные части самолета. Устройство самолета

Содержание

Основные части самолета. Устройство самолета

Изобретение самолета позволило не только осуществить древнейшую мечту человечества – покорить небо, но и создать самый быстрый вид транспорта. В отличие от воздушных шаров и дирижаблей, самолеты мало зависят от капризов погоды, способны преодолевать большие расстояния на высокой скорости. Составные части самолета состоят из следующих конструктивных групп: крыла, фюзеляжа, оперения, взлетно-посадочных устройств, силовой установки, управляющих систем, различного оборудования.

части самолета

Принцип действия

Самолет – летательный аппарат (ЛА) тяжелее воздуха, оборудованный силовой установкой. При помощи этой важнейшей части самолета создается необходимая для осуществления полета тяга – действующая (движущая) сила, которую развивает на земле или в полете мотор (воздушный винт или реактивный двигатель). Если винт расположен перед двигателем, он называется тянущим, а если сзади – толкающим. Таким образом, двигатель создает поступательное движение самолета относительно окружающей среды (воздуха). Соответственно, относительно воздуха движется и крыло, которое создает подъемную силу в результате этого поступательного движения. Поэтому аппарат может держаться в воздухе только при наличии определенной скорости полета.

Как называются части самолета

Корпус состоит из следующих основных частей:

  • Фюзеляж – это главный корпус самолета, связывающий в единое целое крылья (крыло), оперения, силовую систему, шасси и другие составляющие. В фюзеляже размещаются экипаж, пассажиры (в гражданской авиации), оборудование, полезная нагрузка. Также может размещаться (не всегда) топливо, шасси, моторы и т. д.
  • Двигатели используются для приведения в движение ЛА.
  • Крыло – рабочая поверхность, призванная создавать подъемную силу.
  • Вертикальное оперение предназначено для управляемости, балансировки и путевой устойчивости самолета относительно вертикальной оси.
  • Горизонтальное оперение предназначено для управляемости, балансировки и путевой устойчивости самолета относительно горизонтальной оси.

основные части самолета

Крылья и фюзеляж

Основная часть конструкции самолета – крыло. Оно создает условия для выполнения главного требования для возможности полета – наличие подъемной силы. Крыло крепится к корпусу (фюзеляжу), который может иметь ту или иную форму, но по возможности с минимальным аэродинамическим сопротивлением. Для этого ему предоставляют удобно обтекаемую каплеобразную форму.

Передняя часть самолета служит для размещения кабины пилотов и радиолокационных систем. В задней части находится так называемое хвостовое оперение. Оно служит для обеспечения управляемости во время полета.

Конструкция оперения

Рассмотрим среднестатистический самолет, хвостовая часть которого выполнена по классической схеме, характерной для большинства военных и гражданских моделей. В этом случае горизонтальное оперение будет включать неподвижную часть – стабилизатор (от латинского Stabilis, устойчивый) и подвижную – руль высоты.

Стабилизатор служит для придания устойчивости ЛА относительно поперечной оси. Если нос летательного аппарата опустится, то, соответственно, хвостовая часть фюзеляжа вместе с оперением поднимется вверх. В этом случае давление воздуха на верхней поверхности стабилизатора увеличится. Создаваемое давление вернет стабилизатор (соответственно, и фюзеляж) в исходное положение. При подъеме носа фюзеляжа вверх давление потока воздуха увеличится на нижней поверхности стабилизатора, и он снова вернется в исходное положение. Таким образом, обеспечивается автоматическая (без вмешательства пилота) устойчивость ЛА в его продольной плоскости относительно поперечной оси.

Задняя часть самолета также включает вертикальное оперение. Аналогично горизонтальному, оно состоит из неподвижной части – киля, и подвижной – руля направления. Киль придает устойчивость движения самолету относительно его вертикальной оси в горизонтальной плоскости. Принцип действия киля подобен действию стабилизатора – при отклонении носа влево киль отклоняется вправо, давление на его правой плоскости увеличивается и возвращает киль (и весь фюзеляж) в прежнее положение.

Таким образом, относительно двух осей устойчивость полета обеспечивается оперением. Но осталась еще одна ось – продольная. Для предоставления автоматической устойчивости движения относительно этой оси (в поперечной плоскости) консоли крыла планера размещают не горизонтально, а под некоторым углом относительно друг друга так, что концы консолей отклонены вверх. Такое размещение напоминает букву «V».

задняя часть самолета

Системы управления

Рулевые поверхности – важные части самолета, предназначенные для управления воздушным судном. К ним относятся элероны, рули направления и высоты. Управление обеспечивается относительно тех же трех осей в тех же трех плоскостях.

Руль высоты – это подвижная задняя часть стабилизатора. Если стабилизатор состоит из двух консолей, то соответственно есть и два руля высоты, которые отклоняются вниз или вверх, оба синхронно. С его помощью пилот может менять высоту полета летательного аппарата.

Руль направления – это подвижная задняя часть киля. При его отклонены в ту или иную сторону на нем возникает аэродинамическая сила, которая вращает самолет относительно вертикальной оси, проходящей через центр масс, в противоположную сторону от направления отклонения руля. Вращение происходит до тех пор, пока пилот не вернет руль в нейтральное (не отклоненное положение), и ЛА будет осуществлять движение уже в новом направлении.

Элероны (от франц. Aile, крыло) – основные части самолета, представляющие собой подвижные части консолей крыла. Служат для управления самолетом относительно продольной оси (в поперечной плоскости). Так как консолей крыла две, то и элеронов также два. Они работают синхронно, но, в отличие от рулей высоты, отклоняются не в одну сторону, а в разные. Если один элерон отклоняется вверх, то другой вниз. На консоли крыла, где элерон отклонен вверх, подъемная сила уменьшается, а где вниз – увеличивается. И фюзеляж ЛА вращается в сторону поднятого элерона.

Двигатели

Все самолеты оснащаются силовой установкой, позволяющей развить скорость, и, следовательно, обеспечить возникновение подъемной силы. Двигатели могут размещаться в задней части самолета (характерно для реактивных ЛА), спереди (легкомоторные аппараты) и на крыльях (гражданские самолеты, транспортники, бомбардировщики).

Они подразделяются на:

  • Реактивные – турбореактивные, пульсирующие, двухконтурные, прямоточные.
  • Винтовые – поршневые (винтомоторные), турбовинтовые.
  • Ракетные – жидкостные, твердотопливные.

составные части самолета

Прочие системы

Безусловно, другие части самолета также важны. Шасси позволяют летательным аппаратам взлетать и садиться с оборудованных аэродромов. Существуют самолеты-амфибии, где вместо шасси используются специальные поплавки – они позволяют осуществлять взлет и посадку в любом месте, где есть водоем (море, река, озеро). Известны модели легкомоторных самолетов, оснащенных лыжами, для эксплуатации в районах с устойчивым снежным покровом.

Современные самолеты напичканы электронным оборудованием, устройствами связи и передачи информации. В военной авиации используются сложные системы вооружения, обнаружения целей и подавления сигналов.

Классификация

По назначению самолеты делятся на две большие группы: гражданские и военные. Основные части пассажирского самолета отличаются наличием оборудованного салона для пассажиров, занимающего большую часть фюзеляжа. Отличительной чертой являются иллюминаторы по бокам корпуса.

Гражданские самолеты подразделяются на:

  • Пассажирские – местных авиалиний, магистральные ближние (дальность меньше 2000 км), средние (дальность меньше 4000 км), дальние (дальность меньше 9000 км) и межконтинентальные (дальность более 11 000 км).
  • Грузовые – легкие (масса груза до 10 т), средние (масса груза до 40 т) и тяжелые (масса груза более 40 т).
  • Специального назначения – санитарные, сельскохозяйственные, разведывательные (ледовая разведка, рыборазведка), противопожарные, для аэрофотосъемки.
  • Учебные.

В отличие от гражданских моделей, части военного самолета не имеют комфортабельного салона с иллюминаторами. Основную часть фюзеляжа занимают системы вооружения, оборудование для разведки, связи, двигатели и другие агрегаты.

По назначению современные военные самолеты (учитывая боевые задачи, которые они выполняют), можно разделить на следующие типы: истребители, штурмовики, бомбардировщики (ракетоносцы), разведчики, военно-транспортные, специальные и вспомогательного назначения.

Устройство самолетов

Устройство летательных аппаратов зависит от аэродинамической схемы, по которой они выполнены. Аэродинамическая схема характеризуется количеством основных элементов и расположением несущих поверхностей. Если носовая часть самолета у большинства моделей похожа, то расположение и геометрия крыльев и хвостовой части могут сильно разниться.

Различают следующие схемы устройства ЛА:

  • «Классическая».
  • «Летающее крыло».
  • «Утка».
  • «Бесхвостка».
  • «Тандем».
  • Конвертируемая схема.
  • Комбинированная схема.

части пассажирского самолета

Самолеты, выполненные по классической схеме

Рассмотрим основные части самолета и их назначение. Классическая (нормальная) компоновка узлов и агрегатов характерна для большинства аппаратов мира, будь-то военных либо гражданских. Главный элемент – крыло – работает в чистом невозмущенном потоке, который плавно обтекает крыло и создает определенную подъемную силу.

Носовая часть самолета является сокращенной, что приводит к уменьшению требуемой площади (а следовательно, и массы) вертикального оперения. Это потому, что носовая часть фюзеляжа вызывает дестабилизирующий путевой момент относительно вертикальной оси самолета. Сокращение носовой части фюзеляжа улучшает обзор передней полусферы.

Недостатками нормальной схемы являются:

  • Работа горизонтального оперения (ГО) в скошенном и возмущенном крылом потоке значительно снижает его эффективность, что вызывает необходимость применения оперения большей площади (а, следовательно, и массы).
  • Для обеспечения устойчивости полета вертикальное оперение (ВО) должно создавать негативную подъемную силу, то есть направленную вниз. Это снижает суммарный КПД самолета: из величины подъемной силы, которую создает крыло, надо отнять силу, которая создается на ГО. Для нейтрализации этого явления следует применять крыло увеличенной площади (а, следовательно, и массы).

Устройство самолета по схеме «утка»

При данной конструкции основные части самолета размещаются иначе, чем в «классических» моделях. Прежде всего, изменения коснулись компановки горизонтального оперения. Оно располагается перед крылом. По этой схеме построили свой ​​первый самолет братья Райт.

Преимущества:

  • Вертикальное оперение работает в невозмущенном потоке, что повышает его эффективность.
  • Для обеспечения устойчивости полета оперение создает положительную подъемную силу, то есть она добавляется к подъемной силе крыла. Это позволяет уменьшить его площадь и, соответственно, массу.
  • Естественная «противоштопорная» защита: возможность перевода крыльев на закритические углы атаки для «уток» исключена. Стабилизатор устанавливается так, что он получает больший угол атаки по сравнению с крылом.
  • Перемещение фокуса самолета назад при увеличении скорости при схеме «утка» происходит в меньшей степени, чем при классической компоновке. Это приводит к меньшим изменениям степени продольной статической устойчивости самолета, в свою очередь, упрощает характеристики его управления.

Недостатки схемы «утка»:

  • При срыве потока на оперениях происходит не только выход самолета на меньшие углы атаки, но и его «проседания» вследствие уменьшения его общей подъемной силы. Это особенно опасно в режимах взлета и посадки из-за близости земли.
  • Наличие в носовой части фюзеляжа механизмов оперения ухудшает обзор нижней полусферы.
  • Для уменьшения площади переднего ГО длина носовой части фюзеляжа делается значительной. Это приводит к увеличению дестабилизирующего момента относительно вертикальной оси, и, соответственно, к увеличению площади и массы конструкции.

части военного самолета

Самолеты, выполненные по схеме «бесхвостка»

В моделях данного типа нет важной, привычной части самолета. Фото летательных аппаратов «бесхвосток» («Конкорд», «Мираж», «Вулкан») показывает, что у них отсутствует горизонтальное оперение. Основными преимуществами такой схемы являются:

  • Уменьшение лобового аэродинамического сопротивления, что особенно важно для самолетов с большой скоростью, в частности, крейсерской. При этом уменьшаются затраты топлива.
  • Большая жесткость крыла на кручение, что улучшает его характеристики аэроупругости, достигаются высокие характеристики маневренности.

Недостатки:

  • Для балансировки на некоторых режимах полета часть средств механизации задней кромки крыла (закрылков) и рулевых поверхностей надо отклонять вверх, что уменьшает общую подъемную силу самолета.
  • Совмещение органов управления ЛА относительно горизонтальной и продольной осей (вследствие отсутствия руля высоты) ухудшает характеристики его управляемости. Отсутствие специализированного оперения заставляет рулевые поверхности находятся на задней кромке крыла, выполнять (при необходимости) обязанности и элеронов, и рулей высоты. Эти рулевые поверхности называются элевоны.
  • Использование части средств механизации для балансировки самолета ухудшает его взлетно-посадочные характеристики.

«Летающее крыло»

При данной схеме фактически нет такой части самолета, как фюзеляж. Все объемы, необходимые для размещения экипажа, полезной нагрузки, двигателей, топлива, оборудования находятся в середине крыла. Такая схема имеет следующие преимущества:

  • Наименьшее аэродинамическое сопротивление.
  • Наименьшая масса конструкции. В этом случае вся масса приходится на крыло.
  • Так как продольные размеры самолета небольшие (из-за отсутствия фюзеляжа), дестабилизирующий момент относительно его вертикальной оси является незначительным. Это позволяет конструкторам либо существенно уменьшить площадь ВО, либо вообще отказаться от него (у птиц, как известно, вертикальное оперение отсутствует).

К недостаткам относится сложность обеспечения устойчивости полета ЛА.

«Тандем»

Схема «тандем», когда два крыла располагаются один за другим, применяется нечасто. Такое решение используется для увеличения площади крыла при тех же значениях его размаха и длины фюзеляжа. Это уменьшает удельную нагрузку на крыло. Недостатками такой схемы является большое аэродинамическое сопротивление, увеличение момента инерции, особенно в отношении поперечной оси самолета. Кроме того, при увеличении скорости полета изменяются характеристики продольной балансировки самолета. Рулевые поверхности на таких самолетах могут располагаться как непосредственно на крыльях, так и на оперении.

Комбинированная схема

В этом случае составные части самолета могут комбинироваться с использованием различных конструкционных схем. Например, горизонтальное оперение предусмотрено и в носовой, и в хвостовой части фюзеляжа. На них может быть использовано так называемое непосредственное управление подъемной силой.

При этом носовое горизонтальное оперение совместно с закрылками создают дополнительную подъемную силу. Момент тангажа, который возникает в этом случае, будет направлен на увеличение угла атаки (нос самолета поднимается). Для парирования этого момента хвостовое оперение должно создать момент на уменьшение угла атаки (нос самолета опускается). Для этого сила на хвостовую часть должна быть направлена ​​также вверх. То есть происходит приращение подъемной силы на носовом ГО, на крыле и на хвостовом ГО (а следовательно, и на всем самолете) без поворота его в продольной плоскости. В этом случае самолет просто поднимается без всякой эволюции относительно своего центра масс. И наоборот, при такой аэродинамической компоновке самолета он может осуществлять эволюции относительно центра масс в продольной плоскости без изменения траектории своего полета.

Возможность осуществлять такие маневры значительно улучшают тактико-технические характеристики маневренных самолетов. Особенно в сочетании с системой непосредственного управления боковой силой, для осуществления которой самолет должен иметь не только хвостовое, а еще и носовое продольное оперение.

часть конструкции самолета

Конвертируемая схема

Устройство самолета, построенного по конвертируемой схеме, отличается наличием дестабилизатора в носовой части фюзеляжа. Функцией дестабилизаторов является уменьшение в определенных пределах, а то и полное исключение смещения назад аэродинамического фокуса самолета на сверхзвуковых режимах полета. Это увеличивает маневренные характеристики ЛА (что важно для истребителя) и увеличивает дальность или уменьшает расход топлива (это важно для сверхзвукового пассажирского самолета).

Дестабилизаторы могут также использоваться на режимах взлета/посадки для компенсации момента пикирования, который вызывается отклонением взлетно-посадочной механизации (закрылков, щитков) или носовой части фюзеляжа. На дозвуковых режимах полета дестабилизатор скрывается в середине фюзеляжа или устанавливается в режим работы флюгера (свободно ориентируется по потоку).

fb.ru

Устройство самолета и вертолета. Детали самолетов. Части самолетов.

НазваниеОписание
Фюзеляж самолетаПод термином «фюзеляж» принято понимать корпус самолета
Винт самолета. Лопасти самолета. Пропеллер.С помощью винта происходит преобразование крутящего момента от двигателя в тягу.
АвионикаАвионика — весь комплекс электронного оборудования, которое установлено на борту самолетов
АльтиметрВысотомер, является пилотажно-навигационным прибором для измерения высоты полета
Вентиляция самолетаСистема кондиционирования самолета является бортовой системой жизнеобеспечения 
ТягаТяга – сила, выработанная двигателем. Она толкает самолет сквозь воздушный поток. 
СтрингерПродольный элемент силового комплекта самолета, который связан с нервюрами и обшивкой крыла или шпангоутами фюзеляжа
Лонжерон крыла самолетаЛонжероны — это стыковые узлы крыльев, которые являются частью компенсаторных узлов
Головной обтекательПередняя часть самолета или ракеты
Предкрылки самолетаОтвечают за регулирование несущих свойств
Рампа самолетаУстройство, с помощью которого выполняются погрузочно-разгрузочные работы на самолете.
Аварийно-спасательные средстваПорядок применения авиационного аварийно-спасательного оборудования
Закрылки самолета Значительно улучшают несущие характеристики крыла при отрыве от взлетной полосы
Обшивка самолетаОболочка, формирующая оперение и внешнюю поверхность корпуса воздушного судна
Самолетные радиолокаторыИспользуются для обнаружения и определения местоположение воздушных, надводных и наземных объектов 
Шасси самолетаСистема, состоящая из опор, которые позволяют летательному аппарату осуществлять стоянку, перемещение машины по аэродрому или воде
Багажный отсек самолетаОтделения для багажа имеют продуманную конструкцию, что позволяет производить удобную загрузку
Живучесть вертолетаБоевая живучесть является таким же важным параметром вертолета, как и дальность, грузоподъемность
СтабилизаторВыступает в качестве несущей хвостовой поверхности и отвечает за продольную устойчивость воздушного судна
ЦентропланЦентральная часть оперения (крыла) самолета
КессонПредставляет собой силовую часть крыла и прочих элементов планера
АвтопилотБольшую часть полета управление пассажирскими авиалайнерами осуществляют именно автопилоты
РеверсРеверсом называют используемый режим работы двигателя самолета
Прочность самолетаБезопасность полетов воздушных судов непосредственно связана с долговечностью конструкций
Катапультируемое креслоСпециальное устройство, которое предназначено для спасения летчика или экипажа из летательного аппарата в сложных аварийных ситуациях.
Катапультирование из самолетаСпасательная капсула – это катапультируемое закрытое устройство, которое предназначено для спасения летчика из летательного аппарата в сложных аварийных ситуациях
Радиотехнические системы ближней навигацииВ качестве основных средств ближней навигации в организации ИКАО (ICAO) приняты системы ВОР (VOR), BOR/ДМЕ (VOR/ДМП, ВОРТАК (VORTAK) и ТАКАН (TAKAN)
АвиагоризонтОдин из бортовых приборов летательных аппаратов, который используется для индикации и определения наклонов, крена, тангажа самолета
Навигационные огни самолетаЛюбой самолет оснащается бортовыми аэронавигационными и габаритными огнями
Бортовые огни самолетаСветосигнальное оборудование иначе называют еще бортовыми огнями самолета
Топливные бакиОт топливных баков идут топливные провода к силовой установке, что и обеспечивает ее питание горючим
Стойка шассиСтойка является одной из главных составляющих системы шасси в самолетахлюбого класса
Виды двигателей самолетаВсе авиа двигатели принято разделять на 9 основных категорий.
Черный ящик самолетаВот вам загадка: Он оранжевого цвета, а его называют «черным»
ГаргротОбтекаемая часть фюзеляжа ракеты или самолета

Термин «механизация крыла» на английском звучит как «high lift devices», что в дословном переводе – устройства для повышения подъемной сил

ГидравликаГидравлические системы используют для управления рулями и стабилизатором, выпуска и уборки шасси просадочно-взлетной механизации, прочих потребителей.
Речевой информаторЭлектронное устройство, которое обеспечивает автоматическую передачу запрограммированных заранее сообщений в информационные каналы связи.
Компас самолетаОпределяет и сохраняет курс направления полета

Турбовинтовые двигатели используются в тех случаях, когда скорости полета самолета относительно невелики

Для всех реактивных двигателей общим является то, что в процессе сгорания топлива и с последующим преобразованием потенциальной энергии продуктов сгорания в кинетическую

История поршневых двигателей насчитывает на несколько десятилетий больше, чем история самой авиации.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки

Крен самолета

Крен самолета (от фр. carène — киль, подводная часть корабля или от англ. kren-gen — класть судно на бок)

Невесомость в самолетеСостояние, при котором гравитационное притяжение полностью отсутствует
Шины для самолетовАвиашина – многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл.
Летные данные

Скорость, Скороподъемность, Продолжительность полета, Грузоподъемность, Маневренность, Эволютивность, Потолок 

Тангаж (фр. tangage — килевая качка) — угловое движение летательного аппарата или судна относительно главной (горизонтальной) поперечной оси инерции.

Рыскание (рысканье) — угловые движения летательного аппарата, судна, автомобиля относительно вертикальной оси, а также небольшие изменения курса вправо или влево, свойственные судну.

Руль высоты самолетаРуль высоты самолета — аэродинамический орган управления самолёта, осуществляющий его вращение вокруг поперечной оси.
Угол атакиУгол атаки самолета (общепринятое обозначение  — альфа) — угол между направлением скорости набегающего на тело потока (жидкости или газа) и характерным продольным направлением
Подъемная сила самолетаПочему самолет летает ? Подробнее в этой статье…
Заправочное оборудование аэропортовЗа последние 10 – 15 лет существенно изменилось заправочное оборудование для авиационной наземной техники.
Кабина экипажа самолетаПомещение, расположенное  в передней части самолета, откуда летчики осуществляют управление
Санитарный блокИспользуется, как правило, на пассажирских самолетах, которые совершают долгие воздушные полет
Системы ЦЗС и их видыСистема гидрантной заправки ВС (ЦЗСВС) представляет собой сложную систему трубопроводов и топливных магистралей с многим числом контрольных агрегатов и перекачивающих систем. 
Щелевое крылоВ таком крыле стороны нагнетания могут быть отделены от других…
Маневренность самолета. Управляемость и устойчивость самолета.Маневренность самолета — это его способность изменять за определенный промежуток времени свое положение в пространстве
Отказал двигатель самолета или полет с несимметричной тягой.В руководстве по летной эксплуатации каждого типа самолета изложены рекомендации по пилотированию в случае отказа двигателя или системы регулирования воздушного винта на всех этапах полета
Взлет, посадка на заснеженном аэродромеПассажирские самолеты эксплуатируют на ВПП, очищенных от снега и льда. Однако в отдельных случаях самолеты эксплуатируют на специально подготовленных полосах со снежным покровом
Экстренное снижение самолетаПилот должен выполнять снижение с максимально допустимой скоростью и с наибольшим возможным углом наклона траектории.
Авиационная метеорологияАвиационная метеорология — прикладная отрасль метеорологии, изучающая влияние метеорологических элементов и явлений погоды на деятельность авиации.
Линия положения самолетаЛинией положения называется геометрическое место точек положения самолета на земной поверхности
Самолетная радиолокационная доплеровская системаЯвляется автономной радиолокационной системой самолетовождения
Локсодромия , ортодромияКроме частных случаев, когда локсодромия и ортодромия совпадают (полет по меридиану или экватору)
Системы отсчета путевых углов и курса самолетаВыбор системы отсчета путевых углов полета и курса самолета обусловливается эксплуатационными данными самолета и его навигационным оборудованием.
Самолетовождение по ортодромииНа картах, используемых для полетов в гражданской авиации (масштаба 1:1 000 000 и 1:2 000 000)
Самолетовождение и ЭшелонированиеЭшелоны полетов устанавливаются от условного уровня, который соответствует уровню Балтийского моря
Категория: Классификация самолётов

Классификации подаются летные, технические характеристики и типа использованных двигателей, кроме этих параметров учитывается еще большое количество особенностей.

Безопасность полетовПроблема, которая решается усилиями производителей гражданской авиационной техники и Эксплуатантами
Авиационная транспортная системаЭто совокупность совместно действующих воздушных судов…
Летная годностьПозволяет осуществлять безопасный полет в ожидаемых условиях и при установленных методах эксплуатации
Техническое обслуживание самолетовКомплекс операций по поддержанию и восстановлению работоспособности элементов функциональных систем
Подготовка пилотовНесовершенство системы профессиональной подготовки летного состава является существенным сдерживающим фактором повышения безопасности полетов
Бортовое программное обеспечениеВажнейшим является документ DO-178

avia.pro

части самолета и их названия, классификация по конструктивным признакам

Современные пассажирские лайнеры проектируют таким образом, что пассажиры могут быть полностью уверены в своей безопасности. Каждая деталь, каждая система — все проверяется и тестируется несколько раз. Запчасти для них производят в разных странах, а потом собирают на одном заводе.

Устройство пассажирского самолета представляет собой планер. Он состоит из фюзеляжа, крыла хвостового оперения. Последний оснащен двигателями и шасси. Все современные лайнеры дополнительно оборудуют авионикой. Так называют совокупность электронных систем, которые контролируют работу самолета.

Как устроен самолет

Любой летательный аппарат (вертолет, пассажирский лайнер) по своей конструкции — это планер, который состоит из нескольких частей.

Вот как называются части самолета:

  • фюзеляж;
  • крылья;
  • хвостовое оперение;
  • шасси;
  • двигатели;
  • авионика.
как устроен самолеткак устроен самолет

Устройство самолета.

Это несущая часть воздушного судна. Его главное назначение — образование аэродинамических сил, а второстепенное — установочное. Он служит основой, на которую устанавливают все остальные части.

Фюзеляж

Если говорить о частях самолета и их названиях, то фюзеляж — одна из самых важных его составляющих. Само название происходит от французского слова “fuseau”, которое переводится, как “веретено”.

Планер можно назвать “скелетом” самолета, а фюзеляж — его “телом”. Именно он связывает крылья, хвост и шасси. Здесь размещается экипаж лайнера и все оборудование.

Он состоит из продольных и поперечных элементов и обшивки.

Крылья

Как устроено крыло самолета? Оно собирается из нескольких частей: левая или правая полуплоскости (консоли) и центроплан. Консоли включают наплыв крыла и законцовки. Последние могут быть разными у отдельных видов пассажирских лайнеров. Есть винглеты и шарклеты.

классификация самолетов по конструктивным признакамклассификация самолетов по конструктивным признакам

Крыло самолета.

Принцип его работы очень прост — консоль разделяет два потока воздуха. Сверху — находится область низкого давления, а снизу — высокого. За счет этой разницы крыло и позволяет лететь самолету.

На крыло устанавливают меньшие консоли для улучшения их работы. Это элероны, закрылки, предкрылки и т.д. Внутри крыльев расположены топливные баки.

На работу крыла влияет его геометрическая конструкция — площадь, размах, угол, направление стреловидности.

Хвостовое оперение

Оно располагается в хвостовой или носовой части фюзеляжа. Так называют целую совокупность аэродинамических поверхностей, которые помогают пассажирскому лайнеру надежно держаться в воздухе. Они разделяются на горизонтальные и вертикальные.

К вертикальным относят киль или два киля. Он обеспечивает путевую устойчивость воздушного судна, по оси движения. К горизонтальным — стабилизатор. Он отвечает за продольную устойчивость самолета.

Шасси

Это те самые устройства, которые помогают самолету взлетать или садиться, рулить по взлетно-посадочной полосе. Это несколько стоек, которые оборудованы колесами.

Вес пассажирского лайнера напрямую влияет на конфигурацию шасси. Чаще всего используется следующая: одна передняя стойка и две основных. У Аэробуса А320 именно так располагаются шасси. У воздушных судов семейства Боинг 747 — на две стойки больше.

В колесные тележки входит разное количество пар колес. Так у Аэробуса А320 — по одной паре, а у Ан-225 — по семь.

Во время полета шасси убираются в отсек. Когда самолет взлетает или садиться. Они поворачиваются за счет привода к передней стойке шасси или дифференциальной работы двигателей.

Двигатели

Говоря о том, как устроен самолет и как он летает, нельзя забывать о такой важной части самолета, как двигатели. Они работают по принципу реактивной тяги. Они могут быть турбореактивными или турбовинтовыми.

Их крепят к крылу самолета или его фюзеляжу. В последнем случае его помещают в специальную гондолу и используют для крепления пилон. Через него подходят к двигателям топливные трубку и приводы.

устройство пассажирского самолетаустройство пассажирского самолета

У самолета обычно по два двигателя.

Количество двигателей различается в зависимости от модели самолета. О двигателях более подробно написано в этой статье.

Авионика

Это все те системы, которые обеспечивают бесперебойную работу самолета в любых погодных условиях и при большинстве технических неисправностях.

Сюда относят автопилот, противообледенительная система, система бортового электроснабжения и т.д.

Классификация по конструктивным признакам

В зависимости от количества крыльев различают моноплан (одно крыло), биплан (два крыла) и полутораплан (одно крыло короче, чем другое).

В свою очередь монопланы делят на низкопланы, среднепланы и высокопланы. В основу этой классификации лежит расположение крыльев возле фюзеляжа.

Если говорить об оперении, то можно выделить классическую схему (оперение сзади крыльев), тип “утка” (оперение перед крылом) и “бесхвостка” (оперение — на крыле).

По типу шасси воздушные судна бывают сухопутными, гидросамолеты и амфибии (те гидросамолеты, на которые установили колесные шасси).

Есть разные виды самолетов и по видам фюзеляжа. Различают узкофюзеляжные и широкофюзеляжные самолеты. Последние — это, в основном, двухпалубные пассажирские лайнеры. Наверху находятся места пассажиров, а внизу — багажные отсеки.

Вот что из себя представляет классификация самолетов по конструктивным признакам.

nasamoletah.ru

Устройство самолета

Тело самолета, то есть все, что переносится его двигателем, за исключением самого двигателя, в авиации называется планером.

Планер состоит из крыла, фюзеляжа, оперения (стабилизатор и киль) и шасси. Сюда же относят и особый отсек, который часто выходит за пределы крыла или фюзеляжа и предназначается для установки двигателя. Этот отсек называется мотогондолой.

Устройство самолета

Устройство самолета: 1 — крыло; 2 — фюзеляж; 3 — стабилизатор; 4 — киль; 5 — шасси

Пассажирский самолет

Пассажирский лайнер — классический пример устройства воздушного корабля

Крыло

Крыло — это собственно тот элемент конструкции, который помогает самолету взлететь. Сила, поднимающая самолет в воздух, образуется за счет разности давлений на нижнюю и верхнюю поверхности его крыла. А эта разность возникает из-за того, что длина верхнего профиля крыла больше, чем длина нижнего, и за равный промежуток времени верхнему потоку приходится преодолевать большее расстояние, чем нижнему. Верхний поток как бы «растягивается», становиться разреженным, и плотность его уменьшается. При уменьшении плотности верхнего потока уменьшается и сила, давящая на верхнюю часть крыла. Сила же, давящая на нижнюю часть крыла, по-прежнему остается большой, поэтому крыло как бы выталкивает вверх. Сила, возникающая за счет разности сил, давящих на нижнюю и верхнюю часть крыла, называется подъемной силой.

Схема распределения воздушных потоков по профилю крыла

Схема распределения воздушных потоков по профилю крыла: 1 — угол атаки; 2 — направление воздушного потока; 3 — хорда крыла; 4 — профиль крыла

Величина этой силы зависит от очень многих факторов, начиная от площади крыла и заканчивая его профилем. Линия, которая соединяет две точки крыла, находящиеся на наибольшем удалении друг от друга, называется хордой крыла. Хорда крыла образует с потоком воздушных частиц, направленных навстречу крылу, особый угол — угол атаки. Его величина в значительной степени влияет на подъемную силу. Чем она больше, тем выше подъемная сила.

Крыло самолета может быть прямым, стреловидным, треугольным, трапециевидным, эллиптическим, с обратной стреловидностью и т. д. Каждое из них имеет свои достоинства и недостатки. Так, прямое крыло характеризуется высоким коэффициентом подъемной силы, но оно непригодно для сверхзвуковых скоростей из-за сильного лобового сопротивления потокам воздуха, а треугольное, отличаясь пониженным лобовым сопротивлением, имеет невысокую несущую способность.

Разновидности крыла самолета

Разновидности крыла самолета: а — прямое; б — стреловидное; в — с наплывом; г — сверхкритическое; д — треугольное; е — трапециевидное; ж — эллиптическое; з — с обратной стреловидностью

Фюзеляж

Фрагмент каркаса истребителя МиГ-1

Фрагмент каркаса истребителя МиГ-1

Тело самолета без крыла, оперения, мотогондолы и шасси называется фюзеляжем. Внутри него находятся экипаж самолета, его оборудование, грузовой или пассажирский отсеки — иными словами, все, что должно подниматься и переноситься на крыле.

Бывают, впрочем, и фюзеляжи, размещенные внутри самого крыла. Такая конструкция называется летающим крылом. Чаще всего фюзеляж представляет собой тело вращения, имеющее осесимметричную форму, которая позволяет достичь наименьшего веса и минимального сопротивления воздушному трению. Конструктивно фюзеляж представляет собой скелет из ребер, обтянутых снаружи тонкостенной оболочкой — обшивкой. На языке науки такая форма называется коробчатой балкой, а вся конструкция — балочной.

Фюзеляж авиалайнера

Фюзеляж авиалайнера

Оперение

На фюзеляже размещено оперение, то есть все части, которые обеспечивают устойчивость и управляемость машины в небе. Оперение бывает горизонтальным и вертикальным. Первое придает самолету продольную устойчивость относительно невидимой линии, проведенной через крыло самолета. Оно закрепляется обычно в хвостовой части машины — либо на самом фюзеляже, либо наверху киля. Хотя возможно и расположение оперения в передней части самолета. Такая схема называется уткой.

Американский самолет «Нортроп YB-49»

Американский самолет «Нортроп YB-49» сконструированный по схеме «летающее крыло»: и крыло, и оперение выполнены вместе с фюзеляжем

Горизонтальное оперение состоит из неподвижного стабилизатора — двух плоских «крылышек», размещенных чаще всего в хвостовой части, и шарнирно подвешенного к нему руля высоты.

Вертикальное оперение обеспечивает машине устойчивость и неподвижность в поперечном направлении, то есть относительно ее продольной оси. Иначе говоря, оно необходимо, чтобы самолет не «завалился» в полете на крыло, как это произошло с первой машиной Можайского. Вертикальное оперение шарнирно, то есть подвижно, состоит из киля и подвешенного к нему руля направления, который позволяет изменить направление движения машины в воздухе.

Хвостовое оперение «Боинга 747»

Хвостовое оперение «Боинга 747»: 1 — стабилизатор; 2 — руль высоты; 3 — киль; 4 — руль направления

В полете на оперение действуют те же нагрузки, что и на крыло самолета. Соответственно, и составлено оно из элементов, имеющих формы и профили, как у крыла. Оперение может быть трапециевидным, овальным, стреловидным и треугольным. Существуют схемы вообще без оперения. Они называются «бесхвостка» и «летающее крыло».

Шасси

Еще один важный элемент конструкции любого самолета — шасси. Оно служит для передвижения аэроплана по земле или воде при рулении, взлете и посадке.

Шасси может быть колесным, лыжным и поплавковым. Существуют три основные схемы расположения шасси: с хвостовым колесом, с передним колесом и велосипедного типа. В первом случае две главные опоры находятся ближе к передней части, а вспомогательная, хвостовая, — сзади. Во втором случае главные опоры расположены ближе к задней части, а в носовой части находится переднее колесо.

Шасси

Что касается шасси велосипедного типа, то одна главная опора находится в передней части фюзеляжа, вторая — в задней, а две вспомогательные крепятся обычно на крыльях. Схема расположения лыжного шасси идентична, с той лишь разницей, что вместо колес используются лыжи. А вот с поплавковым шасси все немного по-другому.

Существуют следующие типы гидросамолетов: поплавковые, летающие лодки и самолеты-амфибии.

У поплавковых самолетов две основных схемы расположения шасси: первая — два основных поплавка крепятся по бокам фюзеляжа, вторая — основной поплавок крепится к фюзеляжу, а два вспомогательных — к крыльям.

У летающей лодки роль основного поплавка выполняет сам фюзеляж, имеющий форму лодки, а вспомогательные поплавки крепятся к крыльям.

Самолет-амфибия — это та же летающая лодка, но кроме поплавкового шасси у нее есть убирающееся колесное шасси.

Рассмотрим устройство колесного шасси более подробно.

Шасси современного самолета состоит из:

  • амортизационной стойки, которая обеспечивает плавность хода при взлете и передвижении самолета по аэродрому, а также смягчает удары при посадке;
  • бескамерных пневматических колес, снабженных тормозами;
  • тяг, раскосов и шарниров, которые служат для уборки и выпуска шасси и через которые амортизационные стойки крепятся к крылу.

Для достижения хороших летных характеристик у большинства самолетов шасси после взлета убираются в фюзеляж либо крыло. Исключение составляют небольшие и тихоходные машины. Но даже неубирающиеся шасси закрывают обтекателями для снижения аэродинамического сопротивления.

Сердце самолета. Виды авиационных двигателей

Двигатель нужен, чтобы поднять самолет в воздух и удерживать его в небе, создавая подъемную силу. Его с полным правом можно назвать сердцем машины.

Все авиационные двигатели делятся на воздушные и ракетные. Первым для приготовления рабочей смеси необходим атмосферный воздух, то есть действовать они могут только в земных условиях. Все требуемое для работы ракетных двигателей имеет на своем борту сам летательный аппарат. Это значит, что работать они могут и в безвоздушном пространстве.

Воздушные двигатели делятся на винтовые и реактивные. У винтового двигателя рабочим органом, заставляющим машину перемещаться по воздуху, служит винт. У реактивного все необходимое для полета находится в корпусе самого двигателя. К винтовым двигателям относятся поршневой и турбовинтовой. Оба поднимают машину в воздух с помощью винта, но отличаются способом, которым заставляют этот винт вращаться.

Поршневой двигатель

Поршневой двигатель — это первый тип двигателя, который начали применять на воздушных судах, не считая, конечно, малоуспешных попыток взлететь с помощью парового мотора. Топливом для поршневого двигателя служит бензин. Полученная на его бензина рабочая смесь (воздух + бензин) подается в корпус цилиндра, где за счет системы зажигания воспламеняется и приводит в движение поршень.

Схема устройства поршневого двигателя

Схема устройства поршневого двигателя: 1 — цилиндр; 2 — поршень; 3 — шатун; 4 — коленчатый вал

Поршень через шатун, закрепленный подвижно внутри него, воздействует на вал, имеющий особую форму, составленную из многочисленных колен, и потому называемый коленчатым. Коленвал за счет воздействия поршня начинает вращаться.

Вал приводится во вращение через передаточный механизм. Это вращение передается тому самому винту, который заставляет самолет, разбежавшись, подняться над полем аэродрома. Вращаясь, винт создает тягу. Чем мощнее двигатель, тем больше эта тяга.

Самый простой способ повысить мощность двигателя — увеличить число цилиндров. Поэтому конструкторы все время пытались создать как можно более компактные двигатели с максимальным количеством цилиндров.

V-образный поршневой двигатель с V-образным расположением цилиндров

V-образный поршневой двигатель с V-образным расположением цилиндров

Сначала авиационные двигатели были рядными (цилиндры располагались в один ряд). Но рядные двигатели, в которых больше шести цилиндров, оказались трудными в изготовлении и слишком длинными для самолетов. Поэтому придумали V-образные 8- и 12-цилиндровые двигатели. Для сообщения винту как можно большей силы должно быть достаточно много поршней. Например, на двигателях «Мерлин» британской компании «Роллс-Ройс», выпускаемых до и после войны, их было 12. Для максимальной компактности цилиндры устанавливали под углом друг к другу, наподобие латинской буквы V. Двигатели, у которых цилиндры с поршнями располагаются таким образом, называются V-образными.

Однако мотор с наибольшим числом цилиндров можно получить, если разместить их вокруг коленчатого вала наподобие звезды. Двигатели с таким расположением цилиндров называются звездообразными. Количество цилиндров в них доходит до 24. И хотя такие двигатели получались существенно мощнее V-образных, это частично компенсировалось их огромным лобовым сопротивлением, так как площадь фронтального сечения звездообразного двигателя была гораздо большей по сравнению с V-образными. Поэтому во времена поршневой авиации активно применялись и тот и другой типы двигателей.

12-цилиндровый поршневой авиационный двигатель «Мерлин» британской фирмы «Роллс-Ройс»

12-цилиндровый поршневой авиационный двигатель «Мерлин» британской фирмы «Роллс-Ройс»

Турбовинтовой двигатель

Увеличение числа цилиндров, вращающих коленчатый вал, неизбежно ведет к увеличению массы мотора и, соответственно, ухудшению летных характеристик машины. Конструкторы решили эту задачу, разработав турбовинтовой двигатель, который при одинаковой с поршневым двигателем массе выдает гораздо большую мощность. Однако по сравнению с поршневым мотором он неэкономичен и применяется только там, где нужно поднимать в воздух значительный вес или где требуются более высокие скорости. В турбовинтовых двигателях винт приводится во вращение с помощью особого органа — турбины.

Схема устройства турбовинтового двигателя

Схема устройства турбовинтового двигателя: 1 — входное устройство; 2 — осевой компрессор; 3 — камера сгорания; 4 — рабочие лопатки турбины; 5 — сопло

Воздушный поток, набегающий в полете на двигатель, попадает в компрессор, где происходит его сжатие. Сжатый воздух поступает в камеру сгорания, куда одновременно впрыскивается топливо. Воздух и топливо образуют специальную топливовоздушную смесь, которая, сгорая в камере, выпускает горячие газы, воздействующие на турбину. Она приходит во вращение и через редуктор приводит в движение воздушный винт.

Турбовинтовой двигатель проигрывает поршневому в экономичности, но превосходит его по мощности.

Турбореактивный двигатель J85 компании «Дженерал Электрик»

Турбореактивный двигатель J85 компании «Дженерал Электрик»

Турбореактивный двигатель

Данный двигатель по своему устройству напоминает турбовинтовой. Однако если у последнего подъемная сила создается за счет вращения воздушного винта, то у турбореактивного двигателя — посредством выходящей из сопла газовой струи.

Схема устройства турбореактивного двигателя

Схема устройства турбореактивного двигателя: 1 — входное устройство; 2 — компрессор; 3 — камера сгорания; 4 — турбина; 5 — выходное сопло

Турбореактивный двигатель состоит из тех же частей, что и турбовинтовой: входного устройства, куда поступает встречный воздух; компрессора, где он сжимается; камеры сгорания, куда впрыскиваются частицы топлива и где образуется воздушная смесь.

Горячие газы приводят во вращение газовую турбину, а затем, вырываясь с огромной скоростью из сопла, создают тяговую силу. Такие двигатели позволяют получать большую мощность и скорость, чем турбовинтовые, но в три-четыре раза проигрывают им в экономичности.

Чтобы повысить экономичность, был изобретен двухконтурный турбореактивный двигатель, который теперь повсеместно применяется в пассажирской и транспортной авиации.

Такие двигатели подразделяются на дозвуковые, сверхзвуковые и гиперзвуковые, служащие для создания скоростей, которые в разы превосходят скорость звука. Эти двигатели широко используются в военной авиации.

Реактивный прямоточный двигатель

В этом двигателе встречный воздух, поступающий во входное устройство, затормаживается специальным рабочим телом, что приводит к созданию в камере сгорания большого давления. Через форсунки туда же впрыскивается и топливо, которое нагревает воздух в камере. Заканчивается камера сгорания расширяющимся соплом, вырываясь из которого, воздух создает тяговую силу.

Схема устройства реактивного двигателя

Схема устройства реактивного двигателя: 1 — встречный поток воздуха; 2 — центральное тело; 3 — входное устройство; 4 — топливная форсунка; 5 — камера сгорания; 6 — сопло; 7 — реактивная струя

Такие двигатели подразделяются на дозвуковые, сверхзвуковые и гиперзвуковые, служащие для создания скоростей, которые в разы превосходят скорость звука. Эти двигатели широко используются в военной авиации.

Системы бортового оборудования

Все, что обеспечивает жизнь машины в воздухе и правильность ее поведения в полете — управляемость, безопасность, надлежащие условия для пассажиров и экипажа, исправное выполнение специальных функций, для которых, собственно, машина и создавалась, — называют системами бортового оборудования.

Часть бортовой системы электроснабжения самолета: преобразователь тока

Часть бортовой системы электроснабжения самолета: преобразователь тока

В 1970-х годах, когда на воздушные суда начали все шире проникать электронные устройства, для этих систем появился термин «авионика», совместивший в себе понятия «авиация» и «электроника». Оборудование летательных аппаратов подразделяют на собственно авиационное, радиоэлектронное и авиационное вооружение (для военных машин).

К авиационному оборудованию относится, прежде всего, электрика, в том числе системы энергоснабжения, светотехническое оборудование, системы управления силовыми установками (двигателями машины), системы кондиционирования, автоматические противопожарные средства, противообледенительные системы.

Система энергоснабжения обеспечивает электроэнергией все системы и аппараты машины, питаемые от электричества. В нее входят в первую очередь авиационные генераторы, отличающиеся от аналогичных наземных устройств меньшими размерами и весом.

Часть бортовой системы электроснабжения самолета

Часть бортовой системы электроснабжения самолета: генератор постоянного тока

Затем — преобразователи тока, изменяющие его род и характеристики при подаче к электрическим аппаратам. Аварийными источниками питания, которые применяются при выходе из строя основных, служат аккумуляторные батареи.

Наконец, сами электрические провода и коробки для их разветвления, а также разного рода реле, включающие и выключающие в нужный момент то или иное электрическое устройство.

Светотехническое оборудование самолета подразделяется на внешнее и внутреннее. Первое устанавливается на крыле, фюзеляже, хвостовом оперении. Оно служит для предотвращения столкновения с другими машинами, освещения взлетно-посадочной полосы, подсветки опознавательных знаков на борту и прочее. На консолях крыла, носу и хвосте находятся аэронавигационные огни, обозначающие габарит машины в темноте.

Части бортовой системы электроснабжения самолета

Части бортовой системы электроснабжения самолета: а — реле; б — распределительная коробка

Внутреннее освещение применяется в самом самолете — в кабине пилотов, пассажирских отсеках. Оно же используется для подсветки приборных досок.

К приборному оборудованию самолета относятся устройства, осуществляющие измерения условий полета: атмосферное давление за бортом и высоту машины над землей, скорость полета и число Маха (то есть отношение скорости самолета к скорости звука), скорость ветра за бортом, температуру воздуха и прочее. Все приборы, контролирующие эти показатели, называют аэрометрическими.

Фара для освещения взлетной полосы

Фара для освещения взлетной полосы, применявшаяся в советских летательных аппаратах. На снимке — в убранном положении

Отдельная приборная система следит за работой силовых установок: проверяет температуру и давление в рабочих камерах двигателей, предупреждает о сбоях в управляющих системах. Специальные пилотажно-навигационные приборы сверяют движение машины с заданным курсом.

К авиационному оборудованию относят и средства объективного контроля, следящие как за оборудованием машины, так и за поведением ее экипажа, причем делающие это независимо от него. Такие средства, называемые черными ящиками, нужны для выяснения причин аварий. В эту же группу входят и всем известные автопилоты — средства, позволяющие вести машину по заданному курсу в автоматическом режиме. Система предупреждения о столкновении «обозревает» пространство вокруг машины, передает сигналы встречным воздушным судам, сообщает о появлении других машин своему пилоту.

Бортовой аэронавигационный огонь самолета

Бортовой аэронавигационный огонь самолета

Поделиться ссылкой

sitekid.ru

Хвостовое оперение самолета. Фото. Основные функции.

 

Хвостовое оперение – аэродинамические профили, расположенные в хвостовой части самолета. Выглядят они как относительно небольшие «крылышки», которые традиционно устанавливаются в горизонтальной и вертикальной плоскостях и имеют название «стабилизаторы».

 

Именно по этому параметру хвостовое оперение и подразделяется, прежде всего – на горизонтальное и вертикальное, соответственно с плоскостями, в которых устанавливается. Классическая схема – один вертикальный и два горизонтальных стабилизатора, которые непосредственно соединены с хвостовой частью фюзеляжа. Именно такая схема наиболее широко используемая на гражданских авиалайнерах. Однако существуют и другие схемы – например, Т-образное, которое применяется на Ту-154.

В подобной схеме  горизонтальное оперение прикреплено к верхней части вертикального, и если смотреть спереди или сзади самолета, оно напоминает букву «Т», от чего и получило название. Также существует схема с двумя вертикальными стабилизаторами, которые вынесены на законцовки горизонтального оперения, пример самолета с таким типом оперения – Ан-225. Также два вертикальных стабилизатора имеет большинство современных истребителей, однако установлены они на фюзеляже, поскольку те имеют форму фюзеляжа несколько более «приплюснутую» по горизонтали, по сравнению с гражданскими и грузовыми воздушными судами.

Ну и в целом, существуют десятки различных конфигураций хвостового оперений и каждая имеет свои достоинства и недостатки, о которых речь пойдет несколько ниже. Даже устанавливается оно не всегда в хвостовой части самолета, однако это касается лишь горизонтальных стабилизаторов.

Хвостовое оперение самолета Ту-154

Хвостовое оперение самолета Ан-225

 

Принцип работы хвостового оперения. Основные функции.

 

А теперь о функциях хвостового оперения, зачем же оно необходимо? Поскольку оно еще называется стабилизаторами, то можно предположить, что они что-то стабилизируют. Верно, это так. Хвостовое оперение необходимо для стабилизации и балансировки самолета в воздухе, а еще для управления самолетом по двум осям – рысканье (влево-вправо) и тангаж (вверх-вниз).

 

Вертикальное хвостовое оперение.

 

Функции вертикального оперения – стабилизация самолета. Кроме двух вышеперечисленных осей, еще существует третья – крен (вращение вокруг продольной оси самолета), так вот, при отсутствии вертикального стабилизатора, крен вызывает раскачивание самолета относительно вертикальной оси, притом раскачивание очень серьезное и абсолютно неконтролируемое. Вторая функция – управление по оси рысканья.

К задней кромке вертикального стабилизатора прикреплен отклоняемый профиль, который управляется из кабины пилотов. Это две основные функции вертикального хвостового оперения, абсолютно неважно количество, позиция и форма вертикальных стабилизаторов – эти две функции они выполняют всегда.

Виды вертикальных хвостовых оперений. 

 

Горизонтальное хвостовое оперение.

 

Теперь о горизонтальном хвостовом оперении. Оно также имеет две основные функции, первую можно охарактеризовать как балансировочную. Для того чтобы понять что тут к чему, можно провести простой эксперимент. Необходимо взять какой-либо длинный предмет, например линейку и положить ее на один вытянутый палец так, чтобы она не падала и не клонилась ни назад, ни вперед, т.е. найти ее центр тяжести. Итак, теперь у линейки (фюзеляжа) есть крыло (палец), уравновесить ее вроде не сложно. Ну а теперь необходимо представить, что в линейку закачиваются тонны топлива, садятся сотни пассажиров, загружается огромное количество груза.

Естественно, все это загрузить идеально относительно центра тяжести просто невозможно, однако есть выход. Необходимо прибегнуть к помощи пальца второй руки и поместить его сверху от условно задней части линейки, после чего сдвинуть «передний» палец к заднему. В итоге получилась относительно устойчивая конструкция. Можно еще сделать по другому: поместить «задний» палец под линейку и сдвинуть «передний» вперед, в сторону носовой части. Оба этих примера показывают принцип действия горизонтального хвостового оперения.

Более распространен именно первый тип, когда горизонтальные стабилизаторы создают силу, противоположную по направлению к подъемной силе крыльев. Ну и вторая их функция – управление по оси тангажа. Здесь все абсолютно также как и с вертикальным оперением. В наличии отклоняемая задняя кромка профиля, которая управляется из кокпита и увеличивает либо уменьшает силу, которую создает горизонтальный стабилизатор благодаря своему аэродинамическому профилю. Здесь следует сделать оговорку, относительно отклоняемой задней кромки, ведь некоторые самолеты, особенно боевые, имеют полностью отклоняемые плоскости, а не только их части, это касается и вертикального оперения, однако принцип работы и функции от этого не меняются.

Виды горизонтальных хвостовых оперений.

 

А теперь о том, почему конструкторы отходят от классической схемы. Сейчас самолетов огромное количество и их предназначение вместе с характеристиками очень сильно отличается. И, по сути, здесь необходимо разбирать конкретный класс самолетов и даже конкретный самолет в отдельности, но чтобы понять основные принципы будет достаточно нескольких примеров.

Первый — уже упоминаемый Ан-225, имеет двойное вынесенное вертикальное оперение по той причине, что он может нести на себе такую объемную вещь как челнок Буран, который в полете затенял бы в аэродинамическом плане единственный вертикальный стабилизатор, расположенный по центру, и эффективность его была бы чрезвычайно низкой. Т-образное оперение Ту-154 также имеет свои преимущества. Поскольку оно находится даже за задней точкой фюзеляжа, по причине стреловидности вертикального стабилизатора, плечо силы там самое большое (здесь можно опять прибегнуть к линейке и двум пальцам разных рук, чем ближе задний палец к переднему, тем большое усилие на него необходимо), потому его можно сделать меньшим и не таким мощным, как при классической схеме. Однако теперь все нагрузки, направленные по оси тангажа передаются не на фюзеляж, а на вертикальный стабилизатор, из-за чего тот необходимо серьезно укреплять, а значит и  утяжелять.

Кроме того, еще и дополнительно тянуть трубопроводы гидравлической системы управления, что еще больше прибавляет вес. Да и в целом такая конструкция более сложная, а значит менее безопасная. Что же касается истребителей, почему они используют полностью отклоняемые плоскости и парные вертикальные стабилизаторы, то основная причина — увеличение эффективности. Ведь понятно, что лишней маневренности у истребителя быть не может. 

 

avia.pro

основные части и их названия

Многие люди задаются вопросом: как устроен самолет? Ведь именно благодаря специальной конструкции такого транспортного средства и используемым материалам столь большие и тяжелые лайнеры способны подниматься в воздух. Основные составляющие:

  • крылья;
  • фюзеляж;
  • «оперение»;
  • взлетно-посадочное устройство;
  • силовая установка;
  • управляющие системы.

Каждая из этих составляющих имеет особое устройство и может содержать различные типы комплектующих элементов в зависимости от конкретной модели летательного аппарата. Подробное описание частей самолета позволит не только узнать, как он устроен, но и понять принцип, по которому удается осуществлять перелеты на высокой скорости.

Устройство самолета

Фюзеляж

Фюзеляж – это корпус, который включает в себя несколько составляющих. Он собирает в единую систему крылья, хвостовое оперение, силовую установки, шасси и прочие элементы. В корпусе размещаются пассажиры, если рассматривать устройство пассажирского самолета. Также в этой части размещают оборудование, топлива, двигатели и шасси. В этой части размещают любую полезную нагрузку, будь то пассажиры, багаж или транспортируемое оборудование/товары. Например, в военных воздушных судах в этой части располагают оружие и прочую военное снаряжение. Характерная обтекаемая каплеобразная форма корпуса позволяет минимизировать сопротивление во время движения воздушного судна.

Крылья

Перечисляя основные части самолета, нельзя не упомянуть крылья. Крыло летательного аппарата состоит из двух консолей: правой и левой. Главная функция этого элемента заключается в создании подъемной силы. В качестве дополнительной помощи для этих целей многие современные самолеты имеют фюзеляж с плоской нижней поверхностью.

Крылья самолета также оснащены необходимыми «органами» для управления во время полета, а именно для осуществления поворотов в ту или иную сторону. Для улучшения характеристик взлета и посадки крылья дополнительно оснащены взлетно-посадочными механизмами. Они регулируют движение самолета в момент взлета, пробега, а также осуществляют контроль взлетной и посадочной скоростей. В некоторых моделях устройство крыла самолета позволяет размещать в нем топливо.

Помимо двух консолей крылья также оснащены двумя элеронами. Это подвижные составляющие, благодаря которым удается управлять воздушным судном относительно продольной оси. Функционируют эти элементы синхронно. Однако отклоняются они в разные стороны. Если один наклоняется вверх, то второй – вниз. Подъемная сила на консоли, отклоненной вверх, уменьшается. За счет этого осуществляется вращение фюзеляжа.

Вертикальное оперение

Оперение

Устройство самолета также включает «хвостовое оперение». Это еще один значимый элемент конструкции, который включает киль и стабилизатор. Стабилизатор имеет две консоли, подобно крыльям летательного аппарата. Главная функция этой составляющей заключается в стабилизации движения воздушного судна. Благодаря этому элементу самолету удается сохранять требуемую высоту во время полета при различных атмосферных воздействиях.

Киль – составляющая «оперения», которая отвечает за сохранение нужного направления во время движения. Для смены направления или высоты предусмотрено два специальных руля, с помощью которых осуществляется управление этими двумя элементами «оперения».

Стоит учитывать, что части самолета названия могут иметь разные. Например, «хвостом» воздушного судна в некоторых случаях называют заднюю часть фюзеляжа и оперение, а иногда это понятие используют, чтобы обозначить исключительно киль.

Шасси

Эта часть воздушного судна также называется взлетно-посадочным устройством. Благодаря данной составляющей обеспечивается не только взлет, но и мягкая посадка. Шасси представляет собой целый механизм различных устройств. Это не просто колеса. Устройство взлетно-посадочного механизма намного сложнее. Одна лишь его составляющая (система уборки/выпуска) представляет собой непростую установку.

Силовая установка

Именно за счет работы двигателя авиалайнер приводится в движение. Силовая установка обычно располагается либо на фюзеляже, либо под крылом. Чтобы понять, как работает самолет, надо разобраться в устройстве его двигателя. Основные детали:

  • турбина;
  • вентилятор;
  • компрессор;
  • камера сгорания;
  • сопло.

В начале турбины расположен вентилятор. Он обеспечивает сразу две функции: нагнетает воздух и охлаждает все составляющие мотора. За этим элементом находится компрессор. Под большим давлением он переносит поток воздуха в камеру сгорания. Здесь воздух перемешивается с топливом, и полученная смесь поджигается. После этого поток направляется в основную часть турбины, и она начинает вращаться. Устройство турбины самолета обеспечивает вращение вентилятора. Таким образом обеспечивается замкнутая система. Для работы двигателя требуется лишь постоянно подводить воздух и топливо.

Сборка простых самолётов

Классификация воздушных судов

Все авиалайнеры подразделяются на две основные группы в зависимости от назначения: военные и гражданские. Главное отличие самолетов второго типа заключается в наличии салона, который оборудован специально для транспортировки пассажиров. Пассажирские воздушные суда, в свою очередь, делятся на магистральные ближние (летают на расстояния до 2000 км), средние (до 4000 км) и дальние (до 9000 км). Для перелетов на большие расстояния используются авиалайнеры межконтинентального типа. Также в зависимости от разновидности и устройства такие летательные аппараты различаются по весу.

Конструктивные особенности

Устройство авиалайнера может быть различны в зависимости от конкретного типа и предназначения. Самолеты, сконструированные по аэродинамической схеме, могут иметь разную геометрию крыльев. Чаще всего для пассажирских полетов используют воздушные судна, которые выполнены по классической схеме. Вышеописанная компоновка основных частей относится именно к таким авиалайнерам. У моделей этого типа укорочена носовая часть. Благодаря этому обеспечивается улучшенный обзор передней полусферы. Главным недостатком таких самолетов является относительно невысокое КПД, что объясняется необходимостью применения оперения большой площади и, соответственно, массы.

Еще одна разновидность самолетов носит наименование «утка» из-за специфической формы и расположения крыла. Основные части в этих моделях размещены не так, как в классических. Оперение горизонтальное (устанавливающееся в верхней части киля) расположено перед крылом. Это способствует увеличению подъемной силы. А также благодаря такому расположению удается уменьшить массу и площадь оперения. При этом оперение вертикальное (стабилизатор высоты) функционирует в невозмущенном потоке, что значительно повышает его эффективность. Самолеты этого типа более просты в управлении, чем модели классического типа. Из недостатков следует выделить уменьшение обзора нижней полусферы из-за наличия оперения перед крылом.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

samoleting.ru

Конструкция самолёта — это… Что такое Конструкция самолёта?

Конструкция самолёта наиболее часто представляет собой планер, состоящий из фюзеляжа, крыла и хвостового оперения, оснащённый двигателем и шасси. Современные самолёты оснащаются также авионикой.

Существуют, однако, иные конструктивные схемы современных самолетов. В частности всем известный бомбардировщик B-2, построенный по схеме «летающее крыло». Другой пример — МиГ-29, построенный по так называемой несущей схеме, в которой вместо понятия фюзеляж применяется понятие корпус. (Корпус МиГ-29 — широкий фюзеляж, также участвующий в создании аэродинамической подъемной силы.) Еще один пример альтернативной конструктивной схемы самолета — ЭКИП, который условно можно назвать «летающей черепахой» из-за его довольно своеобразной формы.

Планер

Обычно планер самолёта включает фюзеляж, крыло, хвостовое оперение, шасси и гондолы, куда помещают двигательные установки или другие агрегаты. Этот набор элементов характерен для классической конструктивной схемы. Некоторые элементы могут отсутствовать в других конструктивных схемах.

Компоновочные схемы

На сегодняшний день различают следующие существующие компоновочные схемы самолётов:

Фюзеляж

Различные типы фюзеляжей

Фюзеляж является «телом» самолёта. В нём располагаются кабина экипажа, основные топливные баки, системы управления и контроля, пассажирские салоны и багажные отсеки (в пассажирских самолётах) или грузовые отсеки (в грузовых самолетах), оружие (в боевых самолётах) и так далее. Фюзеляж состоит из продольных балок, шпангоутов и металлических (как правило, алюминиевых) листов.

Пассажирские самолёты разделяют на узко- и широкофюзеляжные. У первых диаметр поперечного сечения фюзеляжа составляет в среднем 2-3 метра. Диаметр широкого фюзеляжа — не менее шести метров. Все широкофюзеляжные самолёты — двухпалубные: на верхней палубе располагаются пассажирские места, на нижней — багажные отсеки. Существуют самолёты с двумя пассажирскими палубами — Airbus A380 и Боинг 747.

Крыло

Ил-76, высокоплан с Т-образным оперением

Крыло является ключевой частью в конструкции самолёта, оно создаёт подъёмную силу: профиль крыла устроен таким образом, что консоль разделяет набегающий на самолёт поток воздуха. Над верхней кромкой крыла образуется область низкого давления, одновременно под нижней — область высокого давления, крыло «выталкивается» наверх, и самолёт поднимается.

Крыло чаще всего крепятся к фюзеляжу:

Крепление крыла непосредственно к центральной части фюзеляжа без центроплана характерно для боевых самолётов (Ту-22М). Самолёт также может иметь два, три и более крыла. Чаще всего у самолётов, имеющих два крыла — бипланов — одно крыло крепится к верхней части фюзеляжа, а другое — к нижней (Ан-2).

На крыле установлено множество отклоняющихся меньших консолей (механизации): закрылки, предкрылки, спойлеры, элероны, интерцепторы и другие. Они позволяют регулировать перемещение самолёта в трёх плоскостях, путевую скорость и некоторые другие параметры полёта. На современных самолетах на крыльях часто устанавливаются вертикальные законцовки, уменьшающие завихрения воздуха на кончиках крыла, снижая уровень вибрации, и, как следствие, экономя топливо. Внутри крыльев (у крупных самолетов), как правило, установлены топливные баки. У легких самолетов крылевые товпливные баки нередко подвещиваются к специальным вертикальным консолям-креплениям.

Аэродинамические свойства крыла определяются его геометрией: размахом, площадью, а также углом и направлением стреловидности. Существуют самолёты с изменяемой геометрией крыла: самолеты с изменяемой стреловидностью крыла, самолеты со складыващися крылом.

Оперение

Оперение устанавливается в хвостовой или носовой части фюзеляжа. Хвостовое оперение в большинстве случаев представляет собой вертикально расположенный киль (или несколько килей — как правило два киля) и стабилизаторы, близкие по конструкции к крылу. Киль регулирует азимутальную устойчивость самолёта по оси движения, а стабилизаторы — тангаж.

Хвостовое оперение чаще всего бывает фюзеляжным (Ил-86) или Т-образным (Ту-154, Ил-76). Реже встречаются два киля на обоих кончиках цельного стабилизатора (Ан-225), хотя оно было довольно распространным на самолетах Второй мировой войны (Пе-2, Ту-2). На некоторых боевых самолётах дополнительное оперение устанавливается в носовой части фюзеляжа (Су-35). Для обеспечения достаточной путевой устойчивости на высоких скоростях, сверхзвуковые самолёты имеют непропорционально большой киль (Ту-22М3) или два киля (Су-27, МиГ-25, F-15).

Шасси

С помощью шасси самолёт осуществляет взлёт и посадку, руление, стоянку. Шасси представляет собой демпферную стойку, к которой крепится колёсная тележка (у гидропланов — поплавок). В зависимости от массы самолёта различается конфигурация шасси. Наиболее часто встречающиеся: одна передняя стойка и две основных (Ту-154, А320), одна передняя и три основных (Ил-96), одна передняя и четыре основных (Боинг 747), две передних и две основных (B-52). Для ранних самолётов было характерно устанавливать две основных стойки и небольшое вращающееся колесо непосредственно под килем без стойки (Ли-2). Также уникальную схему шасси имеет Ил-62: одна передняя стойка, две основных и выдвигающаяся штанга с одной колёсной парой в самом хвосте для устойчивости при разгрузке-погрузке. На самых первых самолётах стоек не было вообще, а колеса крепились на обыкновенную ось.

Колёсные тележки могут иметь различное количество колёсных пар: от одной (А320) до семи (Ан-225).

Управление поворотом самолёта на земле может осуществляться через привод к передней стойке шасси или дифференциацией режима работы двигателей (у самолётов с более чем одним двигателем). В полёте шасси убираются в специальные отсеки для уменьшения аэродинамического сопротивления.

Силовая установка

Самолёт приводится в движение двигателем-движителем. Для современных самолётов характерны турбореактивные или турбовинтовые двигатели. На ранних устанавливались поршневые.

Двигатель либо крепится к крылу или фюзеляжу с помощью пилона (в этом случае он помещается в защищённую гондолу), через который к нему подходят топливные трубки и различные приводы, либо встраивается непосредственно в фюзеляж. Компоновка может сильно различаться: на самолёте может быть всего один двигатель (F-16), два (Ту-204), три (Ту-154), четыре (Ил-96), шесть (Ан-225), восемь (B-52).

Системы бортового оборудования

Колесо в разрезе, видны тормозные диски.

Современные летательные аппараты оснащены весьма сложным и разнообразным оборудованием, которые позволяют выполнять полеты при любых условиях. По действующей документации (Федеральные Авиационные Правила), оборудование летательных аппаратов включает: Авиационное оборудование (АО), Радиоэлектронное оборудование (РЭО), Авиационное вооружение (АВ) — для военных машин.

Системы бортового оборудования большинства летательных аппаратов включают:

В летательных аппаратах военного назначения могут устанавливаться:

  • Радиолокационные и телевизионно-оптические прицельные системы
  • Системы радиоэлектронного противодействия
  • Системы фото и ИК-разведки
  • Системы закрытой кодированной связи

и многое другое.

Тормозная система

Гусеничное шасси B-36, видны тормозные суппорты.

Систему торможения самолета можно разделить на две части:

  • Система торможения встроенная в шасси.
  • Аэродинамические системы торможения

См. также

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *