ТУРБУЛЕНТНОСТЬ — Карта знаний
Турбуле́нтность, устар. турбуле́нция (от лат. turbulentus — бурный, беспорядочный), турбуле́нтное тече́ние — явление, заключающееся в том, что, обычно, при увеличении скорости течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности. Волны появляются случайно… Турбуле́нтность я́сного не́ба (ТЯН) (турбулентность в ясном небе, жаргонизм в речи пилотов — «болтанка в чистом небе», в метеорологической документации — англ. Clear-air turbulence) — один из основных видов атмосферной турбулентности в авиации.Связанные понятия
Планета́рный пограни́чный слой («пограничный слой атмосферы», «слой трения») — нижний слой газовой оболочки планеты, свойства и динамика которого в значительной мере определяются взаимодействием с твёрдой (или жидкой) поверхностью планеты (так называемой «подстилающей поверхностью»). Термодина́мика атмосфе́ры — раздел физики атмосферы, посвящённый изучению процессов передачи и превращения тепла в работу (и наоборот) в атмосфере Земли в связи с изучением физики погодных явлений или климата на основе фундаментальных законов классической термодинамики. Исследования в этой области необходимы для понимания свойств атмосферной турбулентности, конвекции, динамики планетарного пограничного слоя и его вертикальной устойчивости. Термодинамика атмосферы служит основой для моделирования… Воздушная яма — разговорный термин, применяемый к тряске или другим колебаниям при полёте на летательном аппарате, в результате прохождения зоны турбулентности, то есть участка атмосферы с нестабильностью воздушных масс. Сдвиг ветра (англ. Wind Shear) — повышенный градиент скорости и (или) направления ветра в случаях, когда они значительно изменяются на относительно небольшом участке в атмосфере. Сдвиг ветра обычно раскладывают на горизонтальную (м/с на 1 км расстояния) и вертикальную (м/с на 30 м высоты) компоненты, из которых горизонтальная как правило более значительная в районе атмосферных фронтов, а вертикальная — у поверхности Земли, хотя обе могут быть значительными и на больших высотах в районе высотных струйных… Срыв потока — неконтролируемое нарушение баланса процессов ламинарного и турбулентного характеров в движении газа (жидкости) относительно обтекаемого тела. Бари́ческий градие́нт — вектор, характеризующий степень изменения атмосферного давления в пространстве. По числовой величине барический градиент равен изменению давления (в миллибарах) на единицу расстояния в том направлении, в котором давление убывает наиболее быстро, то есть по нормали к изобарической поверхности в сторону уменьшения давления. Пове́рхностные акусти́ческие во́лны (ПАВ) — упругие волны, распространяющиеся вдоль поверхности твёрдого тела или вдоль границы с другими средами. ПАВ подразделяются на два типа: с вертикальной поляризацией и с горизонтальной поляризацией (волны Лява). Общая циркуляция атмосферы (атмосферная циркуляция) — планетарная система воздушных течений над земной поверхностью (в тропосфере сюда относятся пассаты, муссоны и воздушные течения, связанные с циклонами и антициклонами). Создает в основном режим ветра. С переносом воздушных масс общей циркуляцией связан глобальный перенос тепла и влаги. Существование циркуляции атмосферы обусловлено неоднородным распределением атмосферного давления, вызванным влиянием неодинакового нагревания земной поверхности… Геострофи́ческий ве́тер (от др.-греч. γῆ «земля» + στροφή «поворот») — вызванный вращением Земли теоретический ветер, который является результатом полного баланса между силой Кориоли́са и горизонтальным компонентом силы барического градиента: такие условия называются геострофическим балансом. Геострофический ветер направлен параллельно изобарам (линиям постоянного атмосферного давления на определённой высоте). В природе такой баланс встречается редко. Реальный ветер почти всегда отклоняется от геострофического… Атмосфе́рное электри́чество — совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическую проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К… Аэродинамическая интерференция — влияние обтекания одних частей самолета на обтекание других его частей. Аэродинамические силы, действующие на самолет, не являются обыкновенной суммой аэродинамических сил его частей. Это происходит из-за изменения поля скоростей и давлений вблизи и на поверхностях обтекаемых частей. В результате изменяется распределение сил трения и давления, а следовательно, и результирующих аэродинамических сил. Пласти́нчатый отсека́тель (англ. Splitter plate) — разделительная перегородка между воздухозаборником и фюзеляжем, устанавливаемая на реактивных самолётах. Образующаяся щель используется для отвода пограничного слоя, нарастающего на фюзеляже, от воздухозаборников. Волны Ро́ссби — бегущие волны, образующиеся в атмосферах планет и в океанах в умеренных широтах. Спутная струя (спутный след) — это воздушное течение в виде возмущённых масс воздуха (т.е. вихрей), сходящих с крыла, стабилизатора, других несущих и управляющих поверхностей, а также фюзеляжа летательного аппарата. Вихревые следы образуются вследствие возникновения подъемной силы и, соответственно, при реализации индуктивного сопротивления сопровождаются образованием на некотором расстоянии (50-150 метров) позади летательного аппарата двух продольных вихрей противоположенного вращения (концевых… Сва́ливание в авиации — резкое падение подъёмной силы в результате нарушения нормальных условий обтекания крыла воздушным потоком (срыва потока с крыла). Тропосфе́ра (др.-греч. τρόπος «поворот, изменение» + σφαῖρα «шар») — нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км. Турбопа́уза — слой атмосферы, ниже которого доминируют турбулентные перемешивания. Слой ниже турбопаузы известен как гомосфера, там химический состав атмосферы остается неизменным. Слой выше турбопаузы — гетеросфера, там преобладает молекулярная диффузия и химический состав атмосферы с высотой постепенно изменяется. Самые верхние слои атмосферы состоят преимущественно из водорода и гелия. Зали́зы — обтекатели, обеспечивающие плавное, без завихрений, застойных зон и срывов обтекание мест сочленения различных частей летательного аппарата, например стыка крыла самолёта с фюзеляжем, пилона подвески двигателя с мотогондолой и т. п. Пограни́чный слой (ПС) в аэродинамике — слой трения: тонкий слой на поверхности обтекаемого тела или летательного аппарата (ЛА), в котором проявляется эффект вязкости. ПС характеризуется сильным градиентом скорости потока: скорость меняется от нулевой, на поверхности ЛА, до скорости потока вне пограничного слоя (в аэродинамике принято рассматривать ЛА неподвижным, а набегающий на него поток газа имеющим скорость ЛА, то есть в системе отсчёта ЛА). Термокомпас (от лат. themo — тепло и лат. compassum — измеряю направление) — пилотажный прибор для поиска и указания направления на центр термического потока в парапланеризме. Адвекция (от лат. advectio — доставка) — в метеорологии перемещение воздуха в горизонтальном направлении и перенос вместе с ним его свойств: температуры, влажности и других. В этом смысле говорят, например, об адвекции тепла и холода. Адвекция холодных и тёплых, сухих и влажных воздушных масс играет важную роль в метеорологических процессах и тем самым влияет на состояние погоды. Уда́рная волна́ — поверхность разрыва, которая движется внутри среды, при этом давление, плотность, температура и скорость испытывают скачок. Микротурбулентность — вид турбулентности, свойства которой меняются на малых масштабах длины. Крупномасштабная турбулентность носит название макротурбулентности. Обледенение — процесс образования льда на поверхностях различных предметов, зданий и т. д. при низкой температуре. Конвекция (от лат. convectiō — «перенесение») — вид теплообмена, при котором внутренняя энергия передается струями и потоками. Существует так называемая естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс… Абсолютная неустойчивость — вид неустойчивости, при котором малое начальное возмущение в любой точке пространства неограниченно нарастает с течением времени. Это нарастание отличает абсолютную неустойчивость от конвективной неустойчивости, при которой возмущение из данной точки пространства перемещается в каком-либо направлении, а в данной точке с течением времени стремится к нулю. Абсолютная неустойчивость имеет место в системе с распределёнными параметрами (плазме, жидкости или твёрдом теле). Уравнения мелкой воды (известные также как уравнения Сен-Венана в линейной форме) — система гиперболических дифференциальных уравнений в частных производных, которая описывает потоки под поверхностью жидкости. Звуковой барьер в аэродинамике — название ряда явлений, сопровождающих движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её. Флаттер (англиц. от flutter «дрожание, вибрация») — сочетание самовозбуждающихся незатухающих изгибающих и крутящих автоколебаний элементов конструкции летательного аппарата: главным образом, крыла самолёта либо несущего винта вертолёта. Как правило, флаттер проявляется при достижении некоторой критической скорости, зависящей от характеристик конструкции летательного аппарата; возникающий резонанс может привести к его разрушению. Переход к сверхзвуковым скоростям осложнялся опасностями флаттера… Пластинчатый турбулизатор или завихритель — аэродинамическое устройство, которое используется для улучшения воздушного потока на авиационной технике. Устанавливается на обтекаемой поверхности летательного аппарата или для внесения в обтекающий поток возмущений с целью его дестабилизации и смещения вверх по потоку точки перехода ламинарного течения в турбулентное. Вихрь в гидродинамике представляет собой особое течение жидкости, при котором поток совершает вращение вокруг воображаемой оси, прямой или изогнутой. Такой тип движения называется вихревым. Вихревые движения также существуют в других сплошных средах, газообразной среде и в плазме. Теория гидродинамической устойчивости — раздел гидродинамики и теории устойчивости, изучающий условия, при которых теряется устойчивость различных состояний и течений жидкости.kartaslov.ru
Карта турбулентности онлайн — Карта России
Каждому, кто хоть раз летал на самолетах, знакомо неприятное и пугающее ощущение болтанки, заставляющее пожалеть о том, что вы не выбрали более другой способ передвижения. На самом же деле, турбулентность опасна только тем пассажирам, кто считает себя слишком умным или слишком самостоятельным, чтобы следовать указаниям стюардесс и стюардов. Вот, что говорят об этом явлении сами пилоты.
Содержание статьи:
Что такое турбулентность
Возникшая в воздухе турбулентность означает, что лайнер попал в зону разнонаправленных вихревых потоков. Они и вызывают колебания судна, которое многие пассажиры считают невероятно опасным. За время обычного рейса самолет попадает в зону турбулентности несколько раз — но вы, как пассажир, можете этого даже не заметить.
Читать на Don’t Panic: http://dnpmag.com/2017/05/06/vse-chto-nuzhno-znat-o-turbulentnosti/
Травмы
На самом деле турбулентность не так опасна, как считают многие пассажиры. На травмы, полученные в самолете, попавшем в зону турбулентности, приходится не больше 30%. Да и то, почти все пострадавшие — это стюардессы, которые просто не успели пристегнуться ремнями. То есть, чтобы обезопасить себя, нужно всего лишь внимательно смотреть на табло и не пренебрегать указаниями.
Непредсказуемая опасность
Большинство пассажиров считают, что самолет попадает в зону турбулентности совершенно неожиданно. На самом деле, это не так. Пилоты прекрасно знают об условиях за бортом и своевременно предпринимают необходимый маневр. Более того, капитан лайнера не даром получает сводки погоды перед полетом: он планирует заранее все свои действия.
Исключение из правил
Конечно, бывают здесь и свои исключения. Иногда турбулентность может наступить в абсолютно ясном небе. Метеорологический радиолокатор просто не успевает ее засечь — и вот тогда у пилотов не остается времени, чтобы предупредить пассажиров заранее. Большинство травм из-за турбулентности происходит именно в этом случае.
Смертельный полет
Болтать может как угодно сильно, самолету это не повредит. Пассажиры считают, что турбулентность может нарушить целостность обшивки судна, и даже оторвать ему крылья. Но лайнеры сконструированы таким образом, чтобы выдерживать гораздо более серьезные перегрузки. Турбулентность не способна причинить им никакого вреда.
Информация от профессионального пилота
Капитан Чесли Салленберг, совершивший знаменитую посадку прямо на Гудзон, уверяет, что для беспокойства пассажиров нет никаких причин. Попав в зону турбулентности, пилот предпринимает один из двух классических маневров: либо снижается, либо набирает высоту, чтобы выйти на территорию безоблачного неба. При этом и возникает знакомое многим пассажирам ощущение рысканья самолета из стороны в сторону. На самом деле, это происходит всего лишь от снижения скорости, которое возникает из-за сильного встречного ветра.
Прощай страх
Несмотря на то, что турбулентность не считается опасной, ученые вовсю разрабатывают технологии, способные от нее избавиться. Некоторые авиакомпании уже начали тестирование новейших ультрафиолетовых лазеров, которые будут стабилизировать лайнер при самой сильной тряске.
Другие статьи:
maps.uef.ru
Что такое турбулентность в самолете и чем она опасна
«Уважаемые пассажиры, самолет входит в зону турбулентности…» – при этих словах настроение сразу же портится даже у опытных авиапутешественников. Турбулентность – главная неприятность при перелетах, с которой связано большинство переживаний и опасений, ведь в десятке километров над землей любая помеха воспринимается куда болезненнее. Но действительно ли турбулентность представляет собой угрозу?
Что такое турбулентность и где она встречается?
Пилоты, да и многие пассажиры называют её «болтанкой». Попросту – это тряска в салоне самолета, временами довольно сильная, ощущения можно сравнить с поездкой автомобилем по ухабистой дороге. Но в любом случае, это не самые приятные ощущения для и без того нервничающих пассажиров, которые изо всех сил гонят прочь от себя мысль, не станет ли этот толчок знамением грядущей авиакатастрофы.
Причины турбулентности – мощные потоки ветра и воздушные течения, которые встречает на своем пути самолет. Если попасть в такие потоки – кажется, что лайнер падает вниз (это иллюзия, вызванная скоростью, на самом деле изменение высоты измеряется едва ли несколькими метрами) или подскакивает на особо крутом ухабе.
- Турбулентность часто возникает при прохождении сквозь облака, в которых образовываются вихревые потоки, ударяющие в крылья.
- Намного мощнее эти потоки в грозовых фронтах, и поэтому самолеты никогда не летят сквозь них, а обходят, – но по краям фронта формируются завихрения, которые задевают пролетающий мимо самолет и заставляют его трястись. К сожалению, эти завихрения не видно на локаторах, а значит, невозможно заранее определить границы зоны турбулентности и скорректировать маршрут еще на земле, чтобы гарантированно обойти помеху на приличном расстоянии не зацепиться даже за край.
- Временами «болтанка» случается и при ясном небе. Увы, ее также невозможно спрогнозировать.
- И часто турбулентность начинается при посадке, когда самолет встречается с сильными встречными и боковыми порывами ветра.
- «Болтанка» ощущается сильнее на более низких высотах, где в картину вмешиваются восходящие потоки с земли, и слабее – на больших высотах. Чем больше авиалайнер – тем менее заметна турбулентность, ведь его размеры и массу воздушному потоку поколебать куда сложнее.
Так или иначе, явление это достаточно распространенное, и оно обязательно учитывается в предполетной подготовке: опытные пассажиры наверняка помнят предупреждения о возможной турбулентности, которые озвучиваются еще перед стартом.
Дело в том, что перед вылетом пилоты получают погодные сводки, чтобы заранее принять меры, и еще на земле прокладывается маршрут полета с учетом фронтов. Также ни на секунду не останавливается мониторинг во время перелета, чтобы мгновенно отреагировать на неожиданные зоны турбулентности, которые встретятся в пути – это возможно, особенно на дальнемагистральных авиарейсах.
Опасна ли турбулентность для самолета и пассажиров?
Нет, не опасна. Прохождение зон турбулентности – совершенно рутинное обстоятельство, ни разу за перелет не попасть в нестабильную зону – скорее исключение, чем правило. Поэтому воздействие турбулентности учитывается еще на стадии проектирования самолетов, наравне с многими другими факторами, обеспечивающими безопасность перелета. Прочность авиалайнеров рассчитана на значительно более серьезное воздействие, чем когда-либо возникавшее при турбулентности.
Опасна ли турбулентность для пассажиров? Разве что косвенно: повышается риск потерять равновесие и даже травмироваться при перемещении по салону самолета. Именно поэтому очень важно выполнять указания бортпроводников, так как их работа – обеспечить безопасность и комфорт пассажиров во время перелета. Вместе с уведомлением о входе в зону турбулентности пассажиров всегда просят вернуться на свои места и пристегнуться, а бортпроводники дополнительно проверяют полки с ручной кладью, чтобы она не вывалилась из плохо закрытого ящика на крутом воздушном ухабе.
Иными словами, турбулентность в полете – неудобство, а не угроза. Все, что нужно пассажиру – сесть, пристегнуться и просто подождать, пока самолет не пройдет эту зону.
Однако, что делать, если при этом все равно страшно? Для начала, страх полетов – вещь естественная. Авиаперелеты являются будничной реальностью нашего времени, принесшей очень много пользы: скорость, удобство, безопасность. Без воздушных путешествий невозможно представить себе ни работу, ни отдых. Но не так просто перебороть сложившиеся за десятки тысяч лет эволюции человека подсознательные установки.
Отсутствие надежной опоры под ногами, нахождение в закрытом пространстве, потеря контроля над ситуацией на огромной высоте – этих факторов более чем достаточно для стресса, а распространенная реакция человека на стресс – это страх, который сложно убрать воззванием к логике и аутотренингом. Но страх полета иррационален и бесполезен. Вместо предназначенной эволюцией задачи предупреждать об опасности и мобилизовать силы организма он лишь усиливает дискомфорт, поэтому, с этим страхом можно и нужно бороться и с профессиональной помощью – побороть.
Как научиться не бояться летать на самолете?
Аэрофобия преследует человека с тех самых пор, как пассажирские авиаперелеты стали обыденными, и подниматься на борт самолета и пересекать пространство по воздуху понадобилось десяткам тысяч людей ежедневно. Как показывает статистика, больше половины всех пассажиров боятся летать, и причины тому самые разные, как и сами люди. В центре «Летаем без страха» разработаны методики борьбы с аэрофобией – самые разные программы с применением профессиональных авиасимуляторов, позволяющих испытать на земле абсолютно все ощущения перелета и отработать абсолютно любую ситуацию. Каждый клиент – уникален, и для него подберут нужный курс, который позволит навсегда избавиться от страха полетов.
letaem-bez-straha.ru
Москва-Бангкок – зона турбулентности — Новости
02 май 2017 Природные происшествияМосква-Бангкок – зона турбулентности
Самолет Boeing 777 авиакомпании «Аэрофлот», который следовал 1 мая по маршруту Москва-Бангкок, при подлете к столице Таиланда попал в зону турбулентности. 25 пассажиров рейса получили травмы и были госпитализированы.Турбулентность, турбулентность ясного неба, струйные течения
1 мая самолет Boeing 777 авиакомпании «Аэрофлот», который следовал по маршруту Москва-Бангкок, при подлете к столице Таиланда попал в зону сильной турбулентности. Экипаж не успел предупредить пассажиров о необходимости занять свои места и пристегнуть ремни безопасности. В итоге, 25 человек, которые на момент «болтанки» не были пристегнуты, получили травмы и сразу по прилету были отправлены в больницу.Неупорядоченные толчки и броски, испытываемые самолетом во время полета, могут быть вызваны несколькими причинами: интенсивными турбулентными пульсациями ветра, конвективными движениями воздуха на высоте полета судна и волновыми движениями в атмосфере. То есть «трясти» самолет может не только в зоне скопления кучево-дождевой облачности – хотя, конечно, наибольшая интенсивность болтанки наблюдается именно в таких условиях, когда порывы ветра могут достигать 40 м/с и более. Поскольку значения порывов внутри таких облаков заранее неизвестны, они для самолетов являются наиболее опасными, особенно в максимальной стадии их развития, и заход в них самолетов запрещен.
Однако, 1 мая в районе полета воздушного судна облаков не было. В данном случае наблюдался вид турбулентности, который в синоптической метеорологии принято называть «турбулентностью ясного неба». Таким образом, по визуальным признакам предсказать возникновение турбулентности очень сложно.
Эта болтанка, скорее всего, возникла в струйном течении и была связана с интенсивными турбулентными движениями. Наблюдается она не на всем протяжении струйного течения, а на отдельных участках, причем вертикальная протяженность болтанки обычно менее 1000 метров. На одном и том же участке болтанка может появляться и исчезать через небольшие интервалы времени, что тоже затрудняет возможность прогнозирования.
Стоит напомнить также, что для минимизации последствий турбулентности пассажирам стоит по возможности оставаться пристегнутыми на протяжении всего полета, а также не держать на руках крупного багажа: сумки и рюкзаки лучше убрать под сиденье впереди стоящего кресла.
www.meteo-tv.ru
Что такое турбулентность в самолете
Чтобы преодолеть приличное расстояние в комфорте и удобстве, чаще всего пассажиры выбирают самолеты – самый быстрый и удобный вид транспорта. Но к сожалению, многих страшат воздушные перелеты, вернее турбулентность самолета. В этой статье мы разберем понятие зона турбулентности в самолете, что это такое, и стоит ли ее бояться.
Турбулентность: что это такое?
Многие пассажиры задаются вопросом: что такое турбулентность в самолете или, как ее еще называют, «болтанка»? Этот процесс вызывают природные воздушные потоки, которые могут быть как восходящими, так и нисходящими.
Понятное дело, турбулентность может быть разной. Обычную «болтанку» вызывают определенные виды облаков, через которые пролетает воздушное транспортное средство. Такой вид турбулентности нестрашен самолету, так как по проекту воздушный транспорт должен выдерживать перегрузки, которые возникают при таких обстоятельствах.
Как и почему образовываются зоны турбулентности?
Зона турбулентности может возникнуть из-за нескольких причин. Например:
- Опасная «болтанка» возникает в облаках, которые называются грозовыми.
- Образовавшиеся в них завихрения могут перенаправить на воздушное транспортное средство сильнейшие потоки воздушных масс.
- Это приводит к катастрофическим последствиям, вплоть до необходимости сделать срочную посадку.
Опасна ли турбулентность для самолета, образовавшаяся в таких облаках? Конечно, опасна. Но ни один пилот не направит воздушный транспорт в такое страшное место. Обнаружить грозовые облака достаточно просто, ведь они четко отображаются на специальном приборе в экипажной кабине. Увидев впереди такую опасность, пилоты воздушного транспортного средства просто облетают ее.
По краям грозовых облаков также могут образоваться завихрения, которые невозможно увидеть на приборах. Для получения дополнительной информации перед вылетом самолета, все пилоты проходят инструктаж, на котором они получают информацию о погодных условиях. Получив дополнительные данные, экипаж может намного проще выбрать более безопасный маршрут для перелета.
Другие причины
Турбулентность самолета может возникнуть из-за течения воздуха, которое называется струйным. Под такими течениями принято считать воздушные массы, резко меняющие свою скорость как в горизонтальном, так и в вертикальном направлении. Их протяженность достигает несколько тысяч километров, но опасности для воздушного транспортного средства они не несут.
Иногда «болтанка» возникает и при ясной погоде. Причиной ее возникновения становится эшелон полета. Дело в том, что эшелон ни в коем случае нельзя изменять, так как в воздушном пространстве трафик очень плотный, а между воздушным транспортом обязательно выдерживается интервал, чтобы избежать катастроф.
Часто авиалайнеры, заходя на посадку, сталкиваются с затруднениями, вызывают которые сильные порывы ветров. Но благодаря имеющимся нормативам, которые находятся у пилотов, можно срочно отменить посадку. При таких обстоятельствах экипаж воздушного судна оповестит, что выбран другой аэропорт, с более подходящими условиями. А вот у пассажиров может возникнуть паника, ведь за окном они видят ясное небо и даже очертания посадочной полосы, однако самолет резко меняет маршрут полета. Не стоит поддаваться страху, нужно довериться профессионализму пилотов, которые точно знают, как безопасно посадить современный авиалайнер.
Виноват ли пилот?
Многие пассажиры думают, что турбулентность самолета возникает по неопытности пилотов, что, конечно, является неверным суждением. Современные воздушные авиалайнеры идут на так называемом «автопилоте», а ручной режим пилотирования включается лишь в экстренных ситуациях, к примеру, если «болтанка» ощущается очень сильно, а вывести воздушный транспорт из опасной зоны под силу только опытному пилоту. Ощущение «болтанки» сильнее чувствуют пассажиры, которые летят на небольшом самолете. На мощном авиалайнере пересечение зоны турбулентности пассажиры практически не прочувствуют.
Несет ли опасность зона турбулентности для авиалайнеров?
По аналитическим данным можно понять, опасна ли турбулентность для самолета, пассажиров и экипажа. Согласно исследованиям, на протяжении 20-ти лет не было зафиксировано ни одной катастрофы, которая произошла по причине возникновения «болтанки». Несмотря на научно доказанные исследования, вопрос относительно падания воздушного транспорта в зону турбулентности по-прежнему не закрыт. Ведь по теории, такую опасность нельзя не принимать ко вниманию, учитывая, что любая конструкция имеет свою определенную силу мощности. Если авиалайнер будет взлетать или садиться в опасной зоне, то сильнейший порыв ветра способен поднять и резко бросить самолет, что неизбежно приведет к катастрофе. Однако о таких зонах пилоты узнают заранее или им сообщают об внезапно появившейся турбулентности по рации. Поэтому экипаж воздушного судна просто уведет самолет из опасной зоны и посадит самолет в благоприятных метеоусловиях.
Опасность турбулентности для пассажиров
Сильная «болтанка» страшна не так самолетам, как пассажирам, особенно тем, которые не придерживаются правил безопасного полета. Чтобы не получить самому увечий и не доставить травм своим соседям следует четко придерживаться правил, которые подскажут бортпроводники:
- не вставать со своих мест;
- пристегнуть ремни безопасности и не отстегивать их, пока авиалайнер будет находиться в зоне турбулентности;
- находясь пристегнутым в своем кресле, следует постараться расслабиться и спокойно дышать, не поддаваясь при этом панике;
- электронику, к примеру, гаджеты или телефоны, следует спрятать, чтобы они остались на месте и не повредились при сильной «тряске».
Соблюдая правила перелета, не поддаваясь панике, каждый сможет спокойно перенести турбулентность и благополучно долететь до нужного места назначения.
Вконтакте
Одноклассники
Google+
samoleting.ru
Турбулентность
| ||||||||||||||||||||||||||||
www.rulit.me