Старинный навигационный прибор – Навигационные приборы и устройства

Обзор истории развития навигации

Все начиналось с мореплавателей

Для походов по морю были необходимы не только карты и лоции, но приборы, позволяющие вычислять время и координаты корабля, а для планирования путешествий – компас и измерители скорости.

Компас

Одним из первых в истории навигационных «приборов» можно считать соларстейн (в переводе с древнескандинавского — «солнечный камень»). Он несколько раз упоминается в текстах древних викингов.

Явление магнетизма было подмечено людьми еще в глубокой древности. Сегодня считается, что впервые свойства магнитного железняка описал Фалес Милетский в VI веке до н. э. Первые компасы, изобретенные независимо друг от друга в Азии и в Скандинавии около XI века, представляли собой плавающую в наполненной водой раковине дощечку.

К одному из ее концов был прикреплен кусочек каламита — камня, обладающего природными магнитными свойствами. Такой компас хорошо действовал лишь при незначительной качке на корабле.

В конце XII англичанин Некаме и француз Гио де Провенс впервые описали простейшую буссоль (фр. boussole) — устройство, позволяющее определять магнитный азимут в море.У моряков начала XV века в распоряжении имелись всего лишь примитивная буссоль, грубые песочные часы, кишащие ошибками карты. В те времена любая экспедиция по океанским просторам становилась опасной авантюрой, зачастую со смертельным исходом.

Часы

В 1530 году астроном Гемма Фризий (1508-1555) в своем труде «Принципы астрономической космографии» предложил способ определения долготы с помощью хронометра, но отсутствие достаточно точных часов надолго оставили этот метод чисто теоретическим. Дело в том, что часы в те времена редко могли идти без остановки в течение суток, а их точность не превышала 12–15 минут в сутки. Вплоть до 17 века песочные часы оставались единственным средством измерения времени в море. Песочные часы состояли из двух стеклянных сосудов, соединенных тонким отверстием. Сосуды заполнялись песком и запаивались, а количество песка было таким, чтобы за 1 час он полностью пересыпался из одного сосуда в другой, после чего часы переворачивали. Разумеется, что изменяя количество песка, можно было изменять промежуток времени, за которые песок пересыпался из одного сосуда в другой.Обычно песочные часы были рассчитаны на 1 час, 30 минут и полминуты. На кораблях песочные часы на 1 час использовались для измерения времени суток. 30-минутные песочные часы использовались для замера промежутков записи информации в «лисицу» — прообраз бортового журнала. 30 секундные песочные часы были необходимы для измерения скорости лаглинем. Капитан Джон Смит на своем корабле ввел обычай звонить в судовой колокол, чтобы моряки знали, когда начинается или заканчивается их вахта. Один удар колокола соответствовал 30 минутам, 2 удара – 1 часу и так далее вплоть до 8 ударов, означавших 4 часа. Вскоре этот способ оповещения стал общепринятым на всех кораблях в разных странах. С появлением механических часов ими стали оснащать все морские суда, причем этот прибор считался настолько важным, что его запрещалось выносить с корабля для корректировки и навигатор брал на берег маленькие переносные часы, выставлял на них точное местное время и уже по их показаниям корректировались корабельные часы.  Сегодня считается, что первые точные часы были собраны в 1735 англичанином Джоном Гаррисоном(1693-1776). Их точность составляла 4–6 секунд в сутки. По тем временам это была просто фантастическая точность.

 
Астролябия

Астролябия предназначалась для определения высоты стояния небесных тел, так как, зная высоту и точное время, можно было определить широту. Астролябия была известна еще в Древней Греции приблизительно в 240 году до нашей эры. На протяжении двух тысячелетий этот научный инструмент оставался практически неизменным.

Начиная со второй половины 19 века, на смену астролябии пришли квадранты, инструмент для измерения высоты звезд и определения широты. Днем (в полдень) широту определяли по длине солнечной тени, ночью — по высоте определенных звезд над горизонтом.

 
 
Появление навигации

Первый прообраз навигатора появился только в 1920 году. Устройство называлось Plus Fours Routefinder и было похоже на обычные часы, в комплекте с которыми шли карты, крутить которые нужно было вручную. Первый автомобильный навигатор, появился в 1930-м и назывался Iter-Auto Основные его отличия от Plus Fours Routefinder состояли в автоматическом прокручивании карты — при этом скорость, с которой механизм это делал, зависела от скорости движения автомобиля.

 Поворот или возвращение назад в те времена были проблемой — приходилось останавливаться и заправлять в Iter Avto свиток с новой картой местности.

К 1966 получили свое развитие первые электронные навигационные системы, например компанияGeneral Motors представала устройство Driver Aid Information and Routing Система была призвана ассистировать водителя и брать на себя часть функций водителя, чтобы он мог сосредоточиться на управлении автомобилем, а не ориентации на местности. Среди дополнительных новинок того времени — возможность позвонить по радиотелефону! Но только в аварийную или справочную службы. В качестве носителей информации использовались перфокарты: по ним навигатор ориентировался и сообщал об ограничении скорости, направлении и других важных факторах. С бурным ростом количества автомобилей в стране восходящего солнца тоже начались свои собственные разработки. Так в 1973 году Японское агентство промышленной науки и техники запустило в проект системы контроля трафика Comprehensive Automobile Traffic Control System, который должен был помочь водителям ориентироваться в крупных городах с учетом актуальной дорожной информации.

Экспериментальные автомобили оснащенные специальными радиоприемниками и системами электронного отображения данных начала производить компания Toyota. Установленные на дорогах общего пользования передатчики транслировали на автомобильные приборы данные о заторах и предлагали варианты объезда.

Но фактическое начало новой эпохи спутниковой навигации, сам того не подозревая заложил Советский Союз, когда в 1957 году отправили в космос первый искусственный спутник Земли.

Американские учёные при этом наблюдали сигнал, исходящий от спутника и обнаружили, что благодаря эффекту Доплера, описанному еще в далеком 1842 году, частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при отдалении. Поэтому, зная свои координаты, можно выяснить положение и скорость спутника, и, зная положение спутника, можно определить собственную скорость и координаты. На основе данного явления в 1974 году идея спутниковой навигации была реализована для нужд вооруженных сил США, которые запустили первый из 24 GPS-спутников, необходимых для покрытия всей Земли. Последний из них запустили в 1994 году. На данный момент этих спутников 32.

Первый GPS-приёмник, разработанный для вооруженных сил США, был двухместным и с колёсами. Весил около 122 килограммов.

 Как видны спутники из одной точки земли

Советский Союз тоже вел свои разработки в данной области. Официально систему ГЛОНАСС начали разрабатывать в СССР в 1976 году, но только в 1984 запустили первые два спутника. Для полного покрытия Земли также как и для GPS требуется 24 спутника.

Коммерческие компании, не имеющие доступ к космическим, технологиям шли своим путем. Так в 1981 компанией Honda был выпущен первый коммерческий автомобильный навигатор, который назывался Honda Electro Gyro-Cator

Принцип работы основывался на инерциальной системе. Чтобы сделать прибор точным компания Honda совместно с компаниями Alpine и Stanley Electric разработали систему, которая была подключена к коробке передач, чтобы знать, когда автомобиль тронулся и когда остановился.

Чтобы знать в каком направлении движется автомобиль, был разработан специальный прибор, в котором находился газообразный гелий, на который подавалось электричество.По направлению струи гелия система определяла направление транспортного средства. По сути это своеобразный гироскоп. К каждому навигационному прибору поставлялись различные карты, нанесенные на специальные пластиковые прозрачные пленки. Единственная проблема такого навигатора – это его цена. От 2000 до 3000 долларов, в зависимости от набора карт. Honda Accord, в то время, стоила около 8000 долларов.К 1985 году в США уже появляется первый массовый автомобильный навигатор — The Etak Navigator. В отличии от разработки Honda — навигационной прибор Etak с простейшим монохромным экраном хранил карты на магнитных лентах, которые требовалось периодически менять. На нескольких лентах едва умещались схемы Лос-Анджелеса и окрестностей.

Положение в пространстве устройство определяло при помощи расчетов, основываясь на данных цифрового компаса и датчиков скорости. В течение нескольких лет было продано несколько тысяч таких приборов.

Решение о создании гражданской версии GPS системы было принято в 1983 году, после того, как ВВС СССР сбили самолёт компании Korean Airline вторгшейся в воздушное пространство Советского Союза. Споры о случайном сходе с воздушного коридора или намеренно пересечении границы до сих пор продолжаются. Но факт остается фактом, мир нуждался в более точной ориентации в пространстве. Как в воздухе, так и на земле. Из за своей высокой стоимости и большим габаритам, долгое время спутниковая навигация устанавливалась только на морские и воздушные суда.

С развитием электроники и появлением компактных микросхем размеры устройств уменьшались. И так только в 1994 году в списке опций новейшего BMW 7-Series в кузове E38 появляется GPS-навигатор. Уже в виде полноценного устройства с цветным экраном и отличной по тем временам графикой.

Этот агрегат можно считать полноценной медиасистемой – помимо навигатора в одном корпусе были собраны кассетная дека, радиоприемник, бортовой компьютер и даже телевизионный приемник.В США впервые автомобильная GPS навигация появилась на год позже в 1995 году на автомобилях Oldsmobile 88. Опционально их начали комплектовать системой GuideStar

Цветной дисплей устанавливался на консоль, а в багажнике машины монтировался вычислительный процессор. Карты хранились на сменных картриджах – одного хватало не больше чем на карту Калифорнии.В это же время компанией Ashtech был выпущен первый приёмник, рассчитанный на работу и с ГЛОНАСС, и с GPS одновременно. Разработка была для военных и навигатор не была предназначен для массового рынка.

Одним из первых портативных автомобильных навигаторов был Garmin StreetPilot Основным его преимуществом была стоимость — 600 долларов, что гораздо дешевле, чем любое встроенное в автомобиль устройство. Garmin StreetPilot крепился к лобовому стеклу или устанавливался на панель, обладал полноценным цветным экраном и хорошо прокладывал маршруты.

До 2000 на всех спутниках при передачи сигнала для гражданских приемников, правительством США искусственно включалась загрубляющая поправка, снижалась точность работы GPS, в результате чего ухудшалась точность определения местоположения. В 2000 году она была отключена, и на рынок начали массово выходить персональные и автомобильные устройства навигации.Так появился первый смартфон с GPS — Benefon ESC, доступный массовому потребителю.

В том же году компания Alpine представила первый в истории навигатор CVA-1005 с CD-приводом. На одном компакт-диске помимо программы умещалось много картографической информации, что давало возможность прокладывать протяженные маршруты.

К 2006 году для записи карт начали использовать жесткие диски вместо сменных CD. Первые такие аппараты были от компании Pioneer модель AVIC-Z1 являлась полноценными мультимедийным центром и работала быстрее встроенных систем.

 В том же году автопроизводители начали осваивать сегмент систем навигации на российском рынке. Пионером стала компания BMW, предложившая диски с картами Москвы и Подмосковья. Навигация обходилась покупателю в дополнительные 3800 евро, использовала транслитерацию вместо кириллицы и в первое время не отличалась выдающейся детализацией.А первый гражданский автонавигатор с поддержкой российской и американской технологий Glospace появился только в 2007 году.

Массовое производство персональной аппаратуры ГЛОНАСС/GPS началось спустя четыре года.
Первый смартфон с поддержкой ГЛОНАСС, поступил в продажу в 2011 году — МТС 945.

Сегодня обе технологии поддерживают около 10% всех навигационных устройств, включая популярные смартфоны.

Популяризация доступа в интернет принесла в автомобили и онлайн-сервисы. Так в 2011 компании начали объединять систему навигации авто с подгружаемыми из сети картами Google Maps, предложив водителю не схематичную карту, а реальный вид местности.

К 2013 году массовое распространение смартфонов привело к появлению новой концепции. Предлагая системы мультимедийных шлюзов, объединяющих возможности мобильного телефона и мультимедийного комплекса: GPS-датчик и программа навигации работают на смартфоне, а за отображение информации отвечает экран на консоли автомобиля.

Будущее — Дополненная реальность и полный автопилот

Десятки профильных и непрофильных компаний занимаются разработкой безпилотных автомобильных систем и адаптацией военных технологий дополненной реальности в мирное русло.

Например, концепция Dynamic & Intuitive Control Experience, получившая свое начало в 2012 году, от компании Mercedes-Benz, не предполагает участия человека в процессе управления автомобилем. Система навигации возьмет управление на себя, оставив пассажиру лишь развлекательные и информационные функции.

Audi тоже не отстает от концерна Daimler и разрабатывает собственные системы автопилотирования

 

А например компания Jaguar сконцентрировалась на системах дополненной реальности — Jaguar Virtual Windscreen Для внедорожников проектируется лобовое стекло позволяющее заглянуть сквозь автомобиль, для оценки дорожного покрытия.

Для спортивных версий — проецирование фантомных соперников и просчет оптимальной траектории входа в поворот.

 

mda-tech.ru

Навигационные приборы — Юнциклопедия

Навигация — наука о вождении судов, самолетов, космических аппаратов. Для судна, направляющегося из одного порта в другой, важно выбрать наиболее выгодный путь и держаться его, постоянно контролируя свое местонахождение. В этом людям и помогает навигация.

Навигационные приборы. Основной прибор гироскопического компаса; репитер — указатель истинного направления стран света. Экран радиолокатора. Навигационный прибор штурманов самолетов — высотомер. Рубка речного судна на подводных крыльях «Ракета».

Древние мореходы старались плавать вблизи берегов и местонахождение судна определяли по береговым ориентирам. Смелые финикийцы и викинги, плавая вдали от берегов, ориентировались по солнцу и звездам. В XI в. появился компас, но магнитная стрелка в высоких широтах показывала не на географический север, а на магнитный полюс, не совпадающий с северным полюсом. Значит, чем выше были широты, в которых плавали суда, тем большей погрешностью отличались показания компаса. Компас являлся далеко не универсальным средством ориентации. В середине XVI в. выдающийся фламандский картограф Г. Меркатор вычислил координаты магнитного полюса, предложил новый принцип составления карт в равноугольной цилиндрической проекции. С тех пор в этой проекции составляются все морские карты.

Направление движения судна определяют по магнитному компасу (с учетом магнитного склонения) или по гирокомпасу. Гирокомпас устроен по принципу волчка и вращается двигателем с частотой 300 000 оборотов в минуту. Как и всякий волчок, он обладает свойством сохранять в пространстве заданное положение оси, например направление с севера на юг.

Когда судно находится в открытом море, то его курс и пройденное расстояние постоянно наносят на карту. Такой учет курса называется счислением, а курс — счислимым. Результат работы штурмана называют прокладкой (курса судна по карте).

Только поблизости от берега по маяку или по пеленгатору (прибору для определения угловых направлений на внешние ориентиры: береговые или плавучие объекты, небесные светила и др.) штурман может точно назвать координаты судна. Он определяет направление на два ориентира, положение которых известно по карте. От этих ориентиров на карте проводят линии, а точкой их пересечения и будет местонахождение судна в море.

Вдали от берега штурман пользуется навигационными приборами. Скорость судна и пройденное расстояние измеряются с помощью лага. Лаги бывают гидродинамическими и гидростатическими. Гидродинамический лаг — это вертушка (винт), которую на тросе тянут за кормой судна. Обычно лаг соединяют со счетчиком оборотов, установленным на днище судна. Чем быстрее идет судно, тем быстрее вращается лаг, и счетчик показывает большее число оборотов, а на его циферблате указывается значение скорости судна.

Гидростатический лаг воспринимает силу давления воды. В воду опущена трубка, согнутая на конце. Отверстие трубки обращено вперед. Поток набегающей на судно воды создает давление. Чем больше скорость, тем больше давление. По значению давления и определяется скорость судна.

Измерение скорости судна в узлах связано с применением первого простейшего лага, похожего на поплавок. Его сбрасывали с судна на веревке, разделенной на части узлами. Число «выбежавших» за полминуты с судна узлов соответствовало числу пройденных судном морских миль (1,852 км) в час.

Однако лаг не дает очень точного представления о скорости судна, потому что с его помощью нельзя учесть скорости и направления течений, ветра, а также факторов, влияющих на снос судна. Морякам нужен не счислимый, а истинный курс судна, поэтому счислимый курс корректируется астрономическими наблюдениями с использованием секстанта (или секстана) — угломерного зеркально-отражательного инструмента для измерения высот небесных светил над горизонтом или углов между видимыми на берегу предметами. Устройство секстанта таково: к бронзовому сектору, составляющему примерно 1/6 часть круга (название прибора и произошло от латинского слова sextantis — «шестой»), прикреплены зрительная труба и два зеркала (для отражения лучей света от небесного светила). На секторе нанесены деления — градусы и минуты — для угловых измерений.

При определении местонахождения корабля или самолета по солнцу или звездам с помощью секстанта обычно измеряют высоты нескольких небесных светил над линией видимого горизонта. Затем вносят в полученный результат ряд поправок, учитывающих, например, понижение видимого горизонта и др. И наконец, определяют (чаще всего графически) поправки к счислимым координатам, пользуясь формулами мореходной и авиационной астрономии.

С развитием радиотехники радиосвязь пришла на помощь судовой навигации. Радиомаяки, местоположение которых точно известно, непрерывно посылают радиосигналы. Их принимает судовой радиопеленгатор — специальный радиоприемник, при помощи которого определяют пеленг — угол между меридианом, на котором находится судно, и направлением на источник радиоволн. При определении местоположения судна учитывают пеленги двух радиостанций (радиомаяков).

В интересах навигации используют и радиолокатор (см. Радиолокация), позволяющий «видеть» в темноте и тумане, определять расстояние и пеленг до берега или до судна, с которым нужно разойтись в море.

Место судна можно уточнить и по рельефу дна, изображенному на карте. Для этого применяют ультразвуковой прибор — эхолот (см. Акустика, акустическая техника). Измеряя время прохождения ультразвукового импульса до морского дна и обратно, прибор определяет глубину, и автосамописец вычерчивает кривую глубин — рельеф дна. Штурман сравнивает изображение на карте с показаниями эхолотов.

Важную роль играет навигационная техника в авиации, помогая водить самолеты. Перед пилотом на приборной доске среди множества различных приборов есть и навигационные. Это высотомер, устройство которого основано на тех же принципах, что и барометра, реагирующего на изменение давления. Давление с высотой уменьшается, и штурман сравнивает давление на земле с показаниями высотомера. Так можно узнать примерную высоту полета. Истинная высота полета определяется радиовысотомером — малым радиолокатором. Он посылает радиоимпульсы к земле и принимает их обратно. Скорость радиоволны известна — 300 000 км/с, и прибор определяет высоту полета по времени с момента посылки и до возвращения импульса. Измерителем скорости на высоте служит манометр, измеряющий давление встречного потока воздуха. С высотой оно уменьшается, и прибор показывает меньшую скорость. Но указатель скорости автоматически учитывает это изменение, и в результате его стрелка указывает на истинную скорость полета. О направлении полета можно судить по показаниям гирокомпаса.

Как судно морскими течениями, самолет сносит воздушными течениями. Здесь на помощь штурману приходит авиасекстант, измеряющий высоту светила над горизонтом. Зная угловую высоту светила и точное время её определения, рассчитывают линию положения самолета. По двум светилам находят две линии положения, а точка их пересечения определяет местоположение самолета. Лететь точно по курсу помогают радиомаяки и радиолокаторы.

С началом космической эры появилась и космическая навигация (см. Управление космическим аппаратом в полете). Искусственные спутники Земли (ИСЗ) служат ориентирами судам. Создана глобальная система навигационных ИСЗ. Чтобы взять пеленг и определить точное место судна, спутников должно быть не менее двух. Результаты измерений в сочетании с известными географическими координатами спутников помогают определить место судна с высокой точностью.

yunc.org

НАВИГАЦИОННЫЕ ПРИБОРЫ

Навигация — наука о вождении судов, самолетов, космических аппаратов. Для судна, направляющегося из одного порта в другой, важно выбрать наиболее выгодный путь и держаться его, постоянно контролируя свое местонахождение. В этом людям и помогает навигация.

Древние мореходы старались плавать вблизи берегов и местонахождение судна определяли по береговым ориентирам. Смелые финикийцы и викинги, плавая вдали от берегов, ориентировались по солнцу и звездам. В XI в. появился компас, но магнитная стрелка в высоких широтах показывала не на географический север, а на магнитный полюс, не совпадающий с северным полюсом. Значит, чем выше были широты, в которых плавали суда, тем большей погрешностью отличались показания компаса. Компас являлся далеко не универсальным средством ориентации. В середине XVI в. выдающийся фламандский картограф Г. Меркатор вычислил координаты магнитного полюса, предложил новый принцип составления карт в равноугольной цилиндрической проекции. С тех пор в этой проекции составляются все морские карты.

В настоящее время направление движения судна определяют по магнитному компасу (с учетом магнитного склонения) или по гирокомпасу. Гирокомпас устроен по принципу волчка и вращается двигателем с частотой 300 ООО оборотов в минуту. Как и всякий волчок, он обладает свойством сохранять в пространстве заданное положение оси, например направление с севера на юг.

Когда судно находится в открытом море, то его курс и пройденное расстояние постоянно наносят на карту. Такой учет курса называется счислением, а курс — счислимым. Результат работы штурмана называют прокладкой (курса судна по карте).

Только поблизости от берега по маяку или по пеленгатору (прибору для определения угловых направлений на внешние ориентиры: береговые или плавучие объекты, небесные светила и др.) штурман может точно назвать координаты судна. Он определяет направление на два ориентира, положение которых известно по карте. От этих ориентиров на карте проводят линии, а точкой их пересечения и будет местонахождение судна в море.

Вдали от берега штурман пользуется навигационными приборами. Скорость судна и пройденное расстояние измеряются с помощью лага. Лаги бывают гидродинамическими и гидростатическими. Гидродинамический лаг — это вертушка (винт), которую на тросе тянут за кормой судна. Обычно лаг соединяют со счетчиком оборотов, установленным на днище судна. Чем быстрее идет судно, тем быстрее вращается лаг, и счетчик показывает большее число оборотов, а на его циферблате указывается значение скорости судна.

Гидростатический лаг воспринимает силу давления воды. В воду опущена трубка, согнутая на конце. Отверстие трубки обращено вперед. Поток набегающей на судно воды создает Давление. Чем больше скорость, тем больше давление. По значению давления и определяется скорость судна.

Измерение скорости судна в узлах связано с применением первого простейшего лага, похожего на поплавок. Его сбрасывали с судна на веревке, разделенной на части узлами. Число «выбежавших» за полминуты с судна узлов соответствовало числу пройденных судном морских миль (1111,852 км) в час.

Однако лаг не дает очень точного представления о скорости судна, потому что с его помощью нельзя учесть скорости и направления течений, ветра, а также факторов, влияющих на снос судна. Морякам нужен не счислимый, а истинный курс судна, поэтому счислимый курс корректируется астрономическими наблюдениями с использованием секстанта (или секстана) — угломерного зеркально-отражательного инструмента для измерения высот небесных светил над горизонтом или углов между видимыми на берегу предметами. Устройство секстанта таково: к бронзовому сектору, составляющему примерно 1/6 часть круга (название прибора и произошло от латинского слова sextantis — «шестой»), прикреплены зрительная труба и два зеркала (для отражения лучей света от небесного светила). На секторе нанесены деления — градусы и минуты — для угловых измерений.

При определении местонахождения корабля или самолета по солнцу или звездам с помощью секстанта обычно измеряют высоты нескольких небесных светил над линией видимого горизонта. Затем вносят в полученный результат ряд поправок, учитывающих, например, понижение видимого горизонта и др. И наконец, определяют (чаще всего графически) поправки к счислимым координатам, пользуясь формулами мореходной и авиационной астрономии.

С развитием радиотехники радиосвязь пришла на помощь судовой навигации. Радиомаяки, местоположение которых точно известно, непрерывно посылают радиосигналы. Их принимает судовой радиопеленгатор — специальный радиоприемник, при помощи которого определяют пеленг — угол между меридианом, на котором находится судно, и направлением на источник радиоволн. При определении местоположения судна учитывают пеленги двух радиостанций (радиомаяков).

В интересах навигации используют и радиолокатор (см. Радиолокация), позволяющий «видеть» в темноте и тумане, определять расстояние и пеленг до берега или до судна, с которым нужно разойтись в море.

Место судна можно уточнить и по рельефу дна, изображенному на карте. Для этого применяют ультразвуковой прибор — эхолот (см. Акустика, акустическая техника). Измеряя время прохождения ультразвукового импульса до морского дна и обратно, прибор определяет глубину, и автосамописец вычерчивает кривую глубин — рельеф дна. Штурман сравнивает изображение на карте с показаниями эхолотов.

Важную роль играет навигационная техника в авиации, помогая водить самолеты. Перед пилотом на приборной доске среди множества различных приборов есть и навигационные. Это высотомер, устройство которого основано на тех же принципах, что и барометра, реагирующего на изменение давления. Давление с высотой уменьшается, и штурман сравнивает давление на земле с показаниями высотомера. Так можно узнать примерную высоту полета. Истинная высота полета определяется радиовысотомером — малым радиолокатором. Он посылает радиоимпульсы к земле и принимает их обратно. Скорость радиоволны известна — 300 000 км/с, и прибор определяет высоту полета по времени с момента посылки и до возвращения импульса. Измерителем скорости на высоте служит манометр, измеряющий давление встречного потока воздуха. С высотой оно уменьшается, и прибор показывает меньшую скорость. Но указатель скорости автоматически учитывает это изменение, и в результате его стрелка указывает на истинную скорость полета. О направлении полета можно судить по показаниям гирокомпаса.

Как судно морскими течениями, самолет сносит воздушными течениями. Здесь на помощь штурману приходит авиасекстант, измеряющий высоту светила над горизонтом. Зная угловую высоту светила и точное время ее определения, рассчитывают линию положения самолета. По двум светилам находят две линии положения, а точка их пересечения определяет местоположение самолета. Лететь точно по курсу помогают радиомаяки и радиолокаторы.

С началом космической эры появилась и космическая навигация (см. Управление космическим аппаратом в полете). Искусственные спутники Земли (ИСЗ) служат ориентирами судам. Создается глобальная система навигационных ИСЗ. Чтобы взять пеленг и определить точное место судна, спутников должно быть не менее двух. Результаты измерений в сочетании с известными географическими координатами спутников помогают определить место судна с точностью до 50—100 м.


Следующее: НУТРОМЕР
Предыдущее: НАРВАЛ (ЕДИНОРОГ) (MONODON MONOCEROS)
Интересное: Лайфхак или полезные вещи в быту. Как приборы заставить служить дольше.



enciklopediya-tehniki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *